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ABSTRACT: Diabatic Rossby Vortices (DRVs) are a special class of heavily precipitating extra-

tropical cyclone in which latent heating effects play a key role. As such their dynamics defies the

classic mechanism of midlatitude storm formation and poses challenges to modelling and theoret-

ical understanding. Here we build on recent theoretical advances on the growth of DRV modes in

small-amplitude moist instability calculations by exploring the structure of finite-amplitude DRV

storms in a hierarchy of models of moist macroturbulence. Simulations of moist quasigeostrophic

turbulence show a transition to a DRV dominated flow (DRV world) when the latent heating is

strong. The potential vorticity (PV) structure of the DRVs is similar to the PV structure from

small-amplitude DRV modal theory. Simulations of the moist primitive equations also transition

to DRV world when both the latent heating is strong and the Rossby number is sufficiently low. At

high Rossby numbers, however, the PV structure of storms with strong latent heating is bottom-

intensified compared to DRV modal theory due to higher order effects beyond quasigeostrophy,

and the macroturbulent flow has both DRV-like storms and frontal structures. A 1-D model of the

vertical structure of PV is solved for different Rossby numbers and stratification profiles to reconcile

the PV structures of DRVs in the simulations, small-amplitude modal theory, and observations.
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SIGNIFICANCE STATEMENT: Diabatic Rossby Vortices (DRVs) are a special class of heavily22

precipitating extratropical cyclones which grow from the effects of latent heating and as such go23

beyond the classic growth mechanism of midlatitude storm formation. DRVs have been implicated24

in extreme and poorly predicted forms of cyclogenesis and pose challenges to both modeling and25

theoretical understanding. Here, we extend our previous study on the structure and emergence of26

DRVs in small-amplitude instability calculations by exploring the structure of DRV storms and the27

conditions for the emergence of DRV dominated atmospheres (‘DRV world’) in a range of different28

finite-amplitude simulations.29

1. Introduction30

Past research has identified a special class of midlatitude storm, dubbed the Diabatic Rossby31

Vortex (DRV)1, which derives its energy from the release of latent heat associated with condensation32

of water vapor, and as such differs fundamentally from the traditional understanding of midlatitude33

storm formation (Wernli et al. 2002; Moore and Montgomery 2004, 2005; Moore et al. 2008).34

DRVs have been implicated in extreme and poorly predicted forms of cyclogenesis along the east35

coast of the US and the west coast of Europe with significant damage to property and human life36

(Wernli et al. 2002; Boettcher and Wernli 2013; Moore et al. 2008). DRVs have been identified in37

all oceans basins and seasons, and occur at a rate of roughly 10 systems per month in the Northern38

Hemisphere and 4 systems per month in the Southern Hemisphere (Boettcher and Wernli 2013,39

2015).40

More recently, moist baroclinic instability calculations with an idealized GCM over a wide range41

of climates have shown that DRVs become the dominant mode of moist baroclinic instability in42

sufficiently warm climates, pointing to the increased role DRVs might play in the development43

of fast growing disturbances in a warming climate (O’Gorman et al. 2018). While we have a44

good theoretical understanding of classic cyclogenesis, both in terms of simple conceptual models45

of baroclinic instability (Eady 1949; Charney 1947; Phillips 1954; Emanuel et al. 1987; Fantini46

1995; Zurita-Gotor 2005,) and potential vorticity (PV) dynamics of finite-amplitude storms (Davis47

and Emanuel 1991), we have less understanding of the formation and propagation of DRVs, the48

controls on their growth rates and length scales, and their response under climate change. Given49

1DRVs are also referred to as Diabatic Rossby Waves.
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the importance of diabatic effects in cyclogenesis in the current climate and more so in a warming50

climate, developing an equivalent theoretical understanding for DRVs is critical.51

In a recent paper, we isolated the DRV growth mechanism within a conceptually simple and52

analytically tractable model and used it to derive theoretical results for the growth rate and length53

scale of such disturbances (Kohl and O’Gorman 2022). The model was a moist two-layer quasi-54

geostrophic (QG) system in which the effects of latent heating were represented through a reduction55

of the static stability in updrafts in the spirit of simple moist baroclinic theories (Emanuel et al.56

1987). The boundaries were tilted at a variable slope relative to the mean isentrope, thereby57

allowing us to control the strength of meridional PV advection relative to diabatic generation from58

latent heating. In particular this allowed us to study a pure latent-heating driven disturbance with59

no meridional PV advection. We showed that DRVs emerge as the fastest growing modes of moist60

baroclinic instability when the meridional PV gradients is weak and the moist static stability is61

also sufficiently weak (i.e., the latent heating is sufficiently strong). Furthermore, we developed62

a simple PV argument to explain the transition from wave to vortex modes observed in idealized63

GCM simulations of warm climates (O’Gorman et al. 2018). Finally, analytical solutions were64

derived for a DRV mode in an unbounded domain, and a threshold of 𝑟 = 0.38 was found above65

which DRV solutions cease to exist.66

While the two-layer QG results in Kohl and O’Gorman (2022) makes progress on the growth67

mechanism and PV structure of DRV modes, they are based around an assumption of small68

amplitude disturbances, and the implications for finite amplitude disturbances require further in-69

vestigation. Comparing the structure of DRV modes to DRV storms in current and future climates,70

for instance, we showed that finite amplitude effects (e.g., vertical PV advection, ageostrophic71

advection) must be taken into account to relate the structure of PV anomaly and diabatic gener-72

ation in certain observed storms (Kohl and O’Gorman 2022). Furthermore, the small-amplitude73

instability results from the idealized GCM show that the fastest growing mode transitions to a DRV74

rather than a wave in warm climates, but the corresponding macroturbulent state in the idealized75

GCM remains wavy and is not dominated by DRVs (O’Gorman et al. 2018), even if DRVs can be76

identified (Kohl and O’Gorman 2022). It remains unclear if a macroturbulent flow at statistical77

equilibrium with strong latent heating can transition to a completely DRV dominated flow, which78

we will refer to as a ‘DRV world’ from here on.79
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The goal of this paper is to go beyond small-amplitude DRV modes and study the dynamics80

of finite amplitude DRVs and the potential for a transition to DRV world in a hierarchy of dif-81

ferent models of moist macroturbulence, including simulations of moist macroturbulence using82

the quasigeostrophic equations, simulations of moist macroturbulence using the primitive equa-83

tions, and a simple 1D model for the vertical structure of PV in small-amplitude DRV modes vs.84

finite-amplitude storms. The spirit of the simulations is to keep the representation of moist physics85

as simple as possible by sticking to the reduced stability parameterization of latent heating from86

modal theory (Emanuel et al. 1987, Fantini 1995, Kohl and O’Gorman 2022), while gradually87

introducing higher order terms in the dynamics beyond that of small-amplitude modal theory. The88

work is deliberately phenomenological, studying large parameter ranges in a range of different89

models so as to explore the conditions leading to a clear transition to DRV world and to explore90

the differences between the behavior of small-amplitude modes and finite amplitude storms.91

In section 2, we begin by analyzing simulations of moist quasigeostrophic (QG) turbulence as92

a natural extension of the 2-layer moist quasigeostrophic theory of DRV modes presented in Kohl93

and O’Gorman (2022). The QG simulations parallel the work of Lapeyre and Held (2004), but94

with a reduced stability parameterization for latent heating (Emanuel et al. 1987) which greatly95

reduces the number of parameters involved and allows for better comparison with the work of96

O’Gorman et al. (2018) and Kohl and O’Gorman (2022). We show that the flow transitions from97

a state of wavy jets interspersed with vortices to a vortex dominated flow (‘DRV world’) as the98

latent heating is increased. By analyzing the PV structure and PV budget of the storms in the99

strong latent heating regime of the QG simulations, we confirm that the flow has transitioned to100

DRV world. In section 3, we study moist primitive equation simulations in low, intermediate101

and high Rossby number regimes to explore the effects of higher-order effects beyond QG on the102

structure of diabatically driven storms and the overall character of the macroturbulent circulation.103

The simulations are an attempt to bridge the gap between theoretical studies of DRVs based around104

the moist-quasigeostrophic equations versus GCM simulations and observations. In particular,105

strong latent heating is found to lead to a DRV world at low Rossby number but not at high Rossby106

number. In section 4, we distill higher-order effects into a toy model of the vertical structure of107

PV in DRVs that is solved to reproduce much of the variety of the PV structure of DRV storms108
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from the simulations in the previous two sections of the paper and also from reanalysis (Kohl and109

O’Gorman 2022). In section 5, we summarize our results and discuss future work.110

2. DRVs in Simulations of Moist Quasigeostrophic Turbulence111

a. Model Formulation and Governing Equations112

A natural extension of the two-layer moist quasigeostrophic theory of DRV modes presented113

in Kohl and O’Gorman (2022) is to run simulations of moist quasigeostrophic turbulence. The114

two-layer moist QG equations with equal layer height, 𝛽-plane approximation and low level drag115

take the nondimensional form116

𝜕𝑡∇2𝜙+ 𝐽 (𝜙,∇2𝜙) + 𝐽 (𝜏,∇2𝜏) + 𝛽𝜙𝑥 = −𝑅

2
∇2(𝜙− 𝜏), (1)

𝜕𝑡∇2𝜏 + 𝐽 (𝜙,∇2𝜏) + 𝐽 (𝜏,∇2𝜙) + 𝛽𝜏𝑥 +𝑤 =
𝑅

2
∇2(𝜙− 𝜏), (2)

𝜕𝑡𝜏 + 𝐽 (𝜙, 𝜏) + 𝑟 (𝑤)𝑤 = 𝑟 (𝑤)𝑤, (3)

with barotropic and baroclinic stream function 𝜙 =
𝜓1+𝜓2

2 and 𝜏 =
𝜓1−𝜓2

2 where 𝜓1 refers to the117

streamfunction in the upper layer and 𝜓2 to the streamfunction in the lower layer, and with Jacobian118

𝐽 (𝐴, 𝐵) = 𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥 and domain mean average (...). Here, 𝑅 = 𝑅𝑑𝑖𝑚𝐿𝐷/𝑈 where 𝑅𝑑𝑖𝑚 is the119

dimensional drag coefficient, and 𝛽 = 𝛽𝑑𝑖𝑚𝐿
2
𝐷
/𝑈 where 𝛽𝑑𝑖𝑚 is the dimensional 𝛽 parameter. The120

equations have been nondimensionalized assuming an advective time scale, with the deformation121

radius 𝐿𝐷 = 𝑁𝐻/(
√

2 𝑓 ) as the length scale, where 𝐻 is the layer height, and𝑈 as the velocity scale122

which is equivalent to the zonal velocity in the basic static described below (𝑈 in the top layer, and123

−𝑈 in the bottom layer).2 The effects of latent heating on the dynamics are encapsulated in the124

spirit of simple moist theories (Emanuel et al. 1987; Fantini 1995) by the nonlinear factor125

𝑟 (𝑤) =


𝑟, 𝑤 ≥ 0

1, 𝑤 < 0
(4)

2Discretizing the continous thermodynamic equation leads to a deformation radius involving 𝑁 , rather than a reduced gravity, at the mid-
tropospheric level.
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which reduces the static stability by a factor 𝑟 in regions of ascent. Physically, the nonlinear factor126

𝑟 (𝑤) captures that as moist air ascends, it releases latent heat through condensation, resulting in127

a locally reduced static stability. Conversely, descending air, having undergone precipitation and128

become subsaturated, experiences the full static stability. Moist thermodynamics thus introduces129

an additional nonlinearity into the equations which can lead to interesting dynamics. The term130

𝑟 (𝑤)𝑤 in Eq. 3 acts as a spatially uniform radiative cooling to ensure that the domain-mean131

temperature remains constant even though there is latent heating. Eqs. (1-3) are obtained from132

Eqs. A6-A8 in Kohl and O’Gorman (2022) after setting the boundaries at top and bottom to be133

horizontal ℎ1 = ℎ2 = 0, and including the 𝛽 effect and low level drag.134

The system is allowed to go moist baroclinically unstable about a mean temperature gradient in135

thermal wind balance, which corresponds to 𝜏0 = −𝑦, 𝜙0 = 0 and 𝑤0 = 0. We set 𝜏 = 𝜏0+𝜏′, 𝜙 = 𝜙′,136

and 𝑤 = 𝑤′. Eqs. (1-3) then take the form137

𝜕𝑡∇2𝜙+ 𝐽 (𝜙,∇2𝜙) + 𝐽 (𝜏,∇2𝜏) + 𝛽𝜙𝑥 = −∇2𝜏𝑥 −
𝑅

2
∇2(𝜙− 𝜏) − 𝜇∇4(∇2𝜙), (5)

𝜕𝑡∇2𝜏 + 𝐽 (𝜙,∇2𝜏) + 𝐽 (𝜏,∇2𝜙) +𝑤 + 𝛽𝜏𝑥 = −∇2𝜙𝑥 +
𝑅

2
∇2(𝜙− 𝜏) − 𝜇∇4(∇2𝜏), (6)

𝜕𝑡𝜏 + 𝐽 (𝜙, 𝜏) + 𝑟 (𝑤)𝑤 = 𝜙𝑥 − 𝜇∇4𝜏−𝛼𝜏 + 𝑟 (𝑤)𝑤 (7)

where we have dropped all the primes for notational simplicity, and 𝜙, 𝜏 and 𝑤 represent pertur-138

bations about the basic state that have spatially homogeneous statistics. The horizontal means of139

the stream functions 𝜙 and 𝜏, and the mean of 𝑤 are all enforced to be zero. Setting the mean140

of 𝜏 to zero is equivalent to including the spatially uniform radiative cooling term 𝑟 (𝑤)𝑤. Eqs.141

(5-7) also include a small-scale dissipation parametrized by a fourth-order hyper-diffusion with142

coefficient 𝜇; and a large-scale radiative damping parameterized by a linear Newtonian relaxation143

with coefficient 𝛼. The large-scale radiative damping was found to be necessary for simulations144

with roughly 𝑟 < 0.4 and thus large energy input from latent heating because the linear drag term145

was not enough to remove the energy at large scales and allow the simulations to reach a statistical146

steady state (see section 2d for further details), The inability of the static stability to adjust in QG147

and the imposition of a fixed meridional temperature gradient make for a particularly simple and148

homogeneous model setup for analysis, but they also tend to limit the ability of the QG model to149

equilibrate.150
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Our system of moist QG equations differs from the moist QG equations of Lapeyre and Held151

(2004) primarily by always assuming upward motion to be saturated. Thus, no prognostic moisture152

equation is needed, and the effects of latent heating are captured in terms of a single parameter 𝑟.153

So far the 𝑟 parametrization has been used in studies of moist baroclinic instability as an initial154

value problem (Emanuel et al. 1987, Montgomery and Farrell 1991, Montgomery and Farrell 1992,155

Fantini 1995, Moore and Montgomery 2004, Kohl and O’Gorman 2022) with the exception of156

O’Gorman et al. (2018) which considered both small-amplitude instability and a macroturbulent157

steady state. To our knowledge, this is the first time that the 𝑟-parametrization has been applied158

to macroturbulent simulations in a two-layer model. We choose this system here for its simplicity159

and ease of comparison to moist baroclinic theories, but acknowledge that having a prognostic160

moisture equation, like in Lapeyre and Held (2004), allows for conservation properties that are161

more desirable when developing closure theories for PV fluxes (which is not our focus here).162

b. Numerical Simulations: Dry vs. Moist Regimes163

We solve the moist two-layer QG Eqs. (5-7) on a doubly-periodic domain of size 𝐿 = 12𝜋 with164

512x512 grid points using Dedalus, a flexible framework for numerical simulations with spectral165

methods (Burns et al. 2020). We show results for simulations with 𝑟 = 1 (a dry simulation) and166

𝑟 = 0.01 (a moist simulation with strong latent heating). We fix 𝛽 = 0.78 equal to the value of167

Lapeyre and Held (2004).3 This corresponds to a moderate dry supercriticality of 𝜒 = 𝛽−1 = 1.28,168

where 𝜒 > 1 is required for the inviscid dry model to go unstable. We set 𝑅 = 0.11 and 𝜇 = 10−5
169

for both values of 𝑟. We set 𝛼 = 0 for 𝑟 = 1 and 𝛼 = 1.7 for 𝑟 = 0.01. The simulations are started170

using random initial conditions for the stream functions 𝜙 and 𝜏, where we have filtered out all171

wavenumbers with 𝑘 =

√︃
𝑘2
𝑥 + 𝑘2

𝑦 > 3 to avoid having to integrate a lot of small scale noise in the172

initial phase of the simulation. The simulations are run from 𝑡 = 0 until 𝑡 = 120 at 𝑟 = 0.01 and173

𝑡 = 150 at 𝑟 = 1 and outputted in snapshots at time intervals of 0.25. After an initial phase of modal174

instability, the simulations settle into a macroturbulent state (roughly at 𝑡 = 40 for 𝑟 = 0.01 and175

𝑡 = 60 at 𝑟 = 1). This happens more quickly at 𝑟 = 0.01 because the growth rate of the modes is176

increased by latent heating.177

3Please note that compared to Lapeyre and Held (2004), our deformation radius is defined as 𝐿𝐷 = 𝑁𝐻/(
√

2 𝑓 ) instead of 𝐿𝐷 = 𝑁𝐻/ 𝑓 but
the magnitude of our mean flow is 𝑈 instead of their 𝑈/2 so that the definition of 𝛽 = 𝛽𝑑𝑖𝑚𝐿2

𝐷
/𝑈 is equivalent.
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We begin by comparing the structure of the flow field in the two simulations. The relative183

vorticity in the upper and lower layer, alongside the vertical velocity are shown in Fig. 1. Looking184

at the dry simulation (Fig. 1a,c,e), we see that the flow settles into the well known state of 𝛽-plane185

turbulence: wavy jets interspersed with vortices. The relative vorticity is weaker in the lower than186

upper layer because of the low level drag. The vertical velocity field has large-scale ascending and187

descending regions of similar area and magnitude that are mostly confined to the latitude bands of188

the jets. We have provided an animation in Supplemental Video S1.189

In contrast to the dry simulation, we see that the flow in the moist simulation at 𝑟 = 0.01 (Fig.190

1 b, d, f) has transitioned to a DRV world that is dominated by small scale vortices, despite191

the presence of 𝛽. In fact when the simulation was run with 𝛽 changed down to 𝛽 = 0 or up192

to 𝛽 = 1.5, there was no noticeable effect on the overall flow field (not shown). As explored193

in the next section, tendencies in the PV budget at this low 𝑟 = 0.01 are dominated by diabatic194

generation, nonlinear advection and drag, so that making changes to 𝛽 like this are unimportant.195

Indeed, the unimportance of advection across the mean meridional PV gradient in the simulation196

is consistent with a vortex dominated rather than wavy flow. The vortices propagate northwards in197

our simulations through nonlinear advection and the trails of this propagation can be seen in the198

form of tendrilly north-south structures that are easiest to see in the vertical velocity field. This199

is particularly evident by looking at a video of the evolution of the flow over time (Supplemental200

Video S2).201

The vertical velocity field in the moist QG simulation has narrow regions of strongly ascending202

motion compared to wide regions of weakly descending motion (Fig. 1 f), corresponding to a203

remarkably high vertical-velocity asymmetry parameter (O’Gorman 2011) of 𝜆 = 0.94. By contrast204

the asymmetry parameter is much lower at 𝜆 = 0.73 for idealized GCM simulations at the same205

𝑟 = 0.01 (O’Gorman et al. 2018). Kohl and O’Gorman (2024) introduced a simple toy model for 𝜆206

in macroturbulent flow based on the moist QG omega equation which was able to roughly predict207

𝜆 in the idealized GCM simulations and in reanalysis data. The key assumption of the toy model208

is that the dynamical forcing on the right-hand side of the moist omega equation is unskewed for209

macroturbulent flow, and this is found to also be the case in the QG simulations shown here. The210

toy model for 𝜆 correctly predicts that the QG simulations have a higher 𝜆 than the idealized GCM211
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Fig. 1. Snapshots of relative vorticity in the upper layer (a,b) and lower layer (c,d), and vertical velocity (e,f)

in the moist two-layer QG simulations at statistical equilibrium for 𝑟 = 1.0 (a,c,e) and 𝑟 = 0.01 (b,d,f). The flow

transitions from a wavy jet state interspersed with vortices at 𝑟 = 1.0 to a vortex dominated flow at 𝑟 = 0.01. The

vortices migrate poleward over time leaving a trail that can be seen in the vertical velocity snapshot in (f) and

also more clearly over time in Supplementary Video S2.
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because the overall length scale of the flow becomes smaller when the vortex regime emerges,4212

illustrating that high 𝜆 is in principle possible in macroturbulent flow even if it is not seen so far in213

reanalysis or in GCM simulations.214

A similar transition to a vortex dominated state in the strong latent heating regime has first been215

observed by Lapeyre and Held (2004) in a moist-two layer QG system using prognostic moisture.216

However, the authors found that strong vortices had the same sign of vorticity in both layers (even if217

the upper layer vorticity was weaker), and the vorticity field had a much stronger tendency towards218

cyclones in the lower layer than towards anticyclones in the top layer. As we will see in the next219

section, the vortices in our simulation have a baroclinic structure consisting of dipoles of positive220

PV anomalies in the lower layer and negative PV anomalies in the upper layer and the tendency221

towards cyclones in the lower layer is roughly as strong as the tendency towards anticyclones in222

the top layer. Further work comparing simulations with the 𝑟 parameterization of latent heating vs.223

prognostic moisture equations would be helpful to better understand these differences.224

c. Storm Composites of PV and Dynamical Balances in DRV World225

Fig. 2 shows the storm composite of PV anomaly and vertical velocity field in the upper and226

lower layer of the moist QG runs at 𝑟 = 0.01. Composites were created by averaging over the 10227

strongest vertical velocity maxima at each simulation output time between 𝑡 = 40−120 when the228

simulation had reached a macroturbulent state. The PV takes on the typical dipole structure of229

DRV modes with a positive PV anomaly in the lower layer and a negative PV anomaly in the top230

layer (e.g., Kohl and O’Gorman 2022). The PV anomalies are displaced horizontally such that the231

updraft occurs east of the low level positive PV anomaly and west of the upper level negative PV232

anomaly. The ‘trails’ of PV can be seen to go southward because the storms are moving northward.233

Further insights into the dynamical balances maintaining the storms can be obtained by studying239

the tendencies in the PV budget. In the lower layer, the PV budget is given by240

𝜕𝑡𝑞2 = 𝑞2𝑥 − 𝑣2𝑞2𝑦 − 𝐽 (𝜓2, 𝑞2) + (1− 𝑟 (𝑤))𝑤−𝑅∇2𝜓2, (8)

4The effective wavenumber of the 𝑤-spectrum, as defined in Kohl and O’Gorman (2024), is much larger in the QG simulations compared to
the idealized GCM simulations (𝑘 = 6.1 vs. 𝑘 = 1.7). Given these 𝑘 values and 𝑟 = 0.01, the toy model of Kohl and O’Gorman 2024 predicts a
higher value of 𝜆 = 0.84 for the QG simulations compared to a prediction of 𝜆 = 0.75 for the GCM simulation. The underestimate of 𝜆 in the QG
simulations by the toy model is likely a result of the fact the toy model is 1D whereas the vertical velocity field in the QG simulations has a more 2D
structure (vortices) compared to the 1D structure (fronts) in the idealized GCM. A 2D version of the toy model predicts a value of the asymmetry
of 𝜆 = 0.92 for the QG simulations which is in good agreement with the simulated value of 𝜆 = 0.94.
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Fig. 2. Storm composite of the PV anomaly (shading) in (a) the lower layer, and (b) the upper layer of the

moist QG turbulence simulations at 𝑟 = 0.01. The vertical velocity is also shown (black contour); note negative

velocities are too weak to be shown at the chosen contour interval of 50. Composites were created by averaging

over the 10 strongest vertical velocity maxima at each simulation output between 𝑡 = 40−120 when the simulation

had reached a macroturbulent state.
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where 𝑞2 = ∇2𝜓2 + (𝜓1 −𝜓2)/2 is the PV anomaly in the lower layer, 𝜕𝑡𝑞2 is the time tendency248

of the PV in the lower layer, 𝑞2𝑥 is PV advection by the mean zonal wind, −𝑣2𝑞2𝑦 is advection249

of the mean PV gradient by the meridional wind (𝑞2𝑦 includes contributions from both the mean250

temperature gradient and 𝛽), −𝐽 (𝜓2, 𝑞2) is the nonlinear advection, (1−𝑟 (𝑤))𝑤 is the diabatic PV251

tendency, and −𝑅∇2𝜓2 is the drag term. We have ignored the radiative damping and hyperdiffusion252

terms which were found to be small. The composite of the PV tendencies in the lower layer are253

shown in Fig. 3 centered on the vertical velocity maxima. As can be seen from Fig. 3a, the254

net effect of all tendencies is to give poleward propagation and amplification of the PV anomaly.255

The PV tendencies are dominated by mean zonal PV advection, nonlinear advection and diabatic256

heating. Both the drag term, and the meridional advection of mean meridional PV gradients play a257

negligible role. This confirms the strong diabatic character of the storms in this regime with small258

𝑟 and thus strong latent heating.259

Fig. 4 shows a cross-section through the PV tendencies of Fig. 3 averaged between −0.2 <264

𝑦 < 0.2. From left to right, we observe that in the descending part of the solution to the west265

(−1 < 𝑥 < −0.4), where the diabatic generation is zero, the PV tendency is given by the sum266

of mean zonal and nonlinear advection (with nonlinear advection the slightly more dominant267

contribution). In the ascending part of the solution (−0.4 < 𝑥 < 0.4), the PV tendency is the result268

of a three way balance between diabatic generation, zonal advection and nonlinear advection. Here269

12



-0.5 0 0.5

-0.5

0

0.5

y

-200

0

200

-0.5 0 0.5

-0.5

0

0.5

-40

0

40

-0.5 0 0.5

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

-0.5 0 0.5

-0.5

0

0.5

y

-100

0

100

-0.5 0 0.5

-0.5

0

0.5

-100

0

100

-0.5 0 0.5

-0.5

0

0.5

-3

-1.5

0

1.5

3

-0.5 0 0.5

x

-0.5

0

0.5

y

-10

0

10

-0.5 0 0.5

x

-0.5

0

0.5

-100

0

100

-0.5 0 0.5

x

-0.5

0

0.5

-2

0

2

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Composite of the PV tendencies in the lower layer for the storms in the two-layer moist QG turbulent

simulation at 𝑟 = 0.01 showing (a) PV tendency 𝑞2𝑡 , (b) mean zonal advection 𝑞2𝑥 , (c) mean meridional advection

−𝑣2𝑞2𝑦 , (d) nonlinear advection −𝐽 (𝜓2, 𝑞2), (e) diabatic generation (1− 𝑟 (𝑤))𝑤, (f) drag −𝑅∇2𝜓2. Also shown

to help interpretation are (g) the lower-layer PV 𝑞2, (h) midlevel vertical velocity 𝑤, and (i) lower-layer meridional

velocity 𝑣2. Note also that the mean zonal wind in the lower layer is westward. Composites were created by

averaging over the 10 strongest vertical velocity maxima at each simulation output between 𝑡 = 40− 120 when

the simulation had reached a macroturbulent state.
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242

243

244

245

246

247

mean zonal PV advection plays a more dominant role than nonlinear advection. In the descent270

region to the east of the ascent area (0.4 < 𝑥 < 1), a negative PV tendency is caused by nonlinear271

advection with all other terms being negligible.272

The dynamical balances governing the storms are very similar to that of the small-amplitude273

DRV mode of Kohl and O’Gorman (2022), which leads us to the conclusion that they are indeed274

DRVs and that the statistical equilibrium of the simulation is a DRV world. The main difference275

with the mode is the addition of nonlinear advection. Looking at the structure of the nonlinear276

advective tendency in Fig. 3d, we see that it is causing the poleward propagation that is evident277

in the net PV tendency and in Supplemental Video S2. Note that if we had used a basic state278

with westerly winds in the lower layer, the storms would propagate both eastwards and polewards.279
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Fig. 4. Cross section through the PV tendencies in the lower layer shown in Fig. (3) averaged between

−0.2 < 𝑦 < 0.2. Colored lines show the PV tendency 𝑞2𝑡 (blue), mean zonal advection 𝑞2𝑥 (red), mean meridional

advection −𝑣2𝑞2𝑦 (green), nonlinear advection −𝐽 (𝜓2, 𝑞2) (red dashed), diabatic generation (1−𝑟 (𝑤))𝑤 (black),

and the drag −𝑅∇2𝜓2 (black).
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261
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263

Poleward self advection is not found as strongly for the DRV storms observed in the current climate,280

which primarily have an eastward propagation (Boettcher and Wernli 2013). However, poleward281

propagation is found for a DRV storm identified in the warm climate regime of idealized GCM282

simulations (see Fig. 1 of Kohl and O’Gorman 2022). Self-advection relies on the interaction283

between lower and upper positive PV anomalies.5 We speculate that such poleward self-advection284

is weaker in DRVs in the current climate, because of reduced upper level negative PV anomalies285

as discussed in the next section.286

Similar results for the vertical PV structure and the dynamical balances have been found by287

compositing on the lower-layer PV anomaly, rather than the vertical velocity, with the exception288

that the upper-layer negative PV anomaly is weakened compared to the lower-layer PV anomaly,289

and the PV tendency implies northwestward propagation instead of northward propagation (not290

shown).291

5The self-advection by two opposite signed QG PV anomalies in different layers is like that of ‘hetons’ as discussed in Hogg and Stommel
(1985).
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linear radiative damping was applied in these simulations (𝜈 = 0). Simulations below a value of 𝑟 < 0.4 exhibit

strong growth of a single vortex in the domain and a blow-up of energy over time.
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d. Quantifying the Transition to DRV World292

In this section, we seek to quantify the transition to DRV world as 𝑟 is decreased and latent296

heating becomes stronger. One sign of a transition to vortices dominating the flow is that when the297

QG simulations are run without linear radiative damping (𝛼 = 0), the simulations do not reach a298

statistical equilibrium for 𝑟 ≲ 0.4. Instead a single vortex in the domain grows rapidly to large size299

and become very energetic such that the domain-mean energy blows up rather than equilibrating300

(in practice the adaptive timestep in the solver becomes smaller and smaller, and we terminate the301

simulation). Fig. 5 shows the domain mean energy (∇𝜙)2 + (∇𝜏)2 + 𝜏2 as a function of time for a302

series of simulations at selected 𝑟 values with 𝛼 = 0, illustrating the energy blow up for 𝑟 ≲ 0.4.303

Interestingly, the energy blow-up threshold of 𝑟 ≃ 0.4 is close to the exact threshold of 𝑟 = 0.38304

below which DRV modes can exist in an infinite domain in the tilted moist two-layer model (see305

Fig. 6 of Kohl and O’Gorman (2022)). Thus small-amplitude modal theory seems to provide306

an estimate for the 𝑟 value at which DRV world starts to emerge, at least as measured by the307

need for radiative damping to equilibrate the vortices. But it is somewhat surprising that the308

infinite-domain result in the tilted model (which has no basic-state PV gradients) seems to be309

relevant to macroturbulence with PV gradients in a finite domain. When Kohl and O’Gorman310

(2022) analyzed the moist instability in a finite domain with basic-state PV gradients, there was311
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no obvious threshold from wave to vortex modes at 𝑟 = 0.4 (see Fig. 9a in Kohl and O’Gorman312

(2022)). However, it is possible that the finite amplitude vortices are different from the modes in313

this regard because meridional PV advection plays less of a role for the finite amplitude vortices314

considered here compared to small-amplitude modes. This could make the fully tilted model –315

without PV gradients – a better analogy for the fully turbulent simulations. The question of why316

the infinite-domain result is relevant remains open.317

To further quantify the transition to DRV world, we have performed a second set of simulations321

using a constant radiative forcing rate 𝛼 = 0.15 spanning values of 𝑟 = 0.3− 1. The simulations322

are run until 𝑡 = 250 and outputted every Δ𝑡 = 2 times. The aim here is quantify the emergence of323

DRV world without the complicating factor of increases in the minimum required 𝛼 for statistical324

equilibration as 𝑟 is lowered. Snapshots of the resulting relative vorticity field in the upper layer325

are shown in Fig. 6 for a select number of 𝑟 values. Note that for the value of 𝛼 used here an326

equilibrated state would not be reached for 𝑟 less than 0.3, and that the flow at 𝑟 = 1 appears to327

be somewhat over damped. As 𝑟 is lowered the flow field becomes increasingly populated by328

small-scale vortices (Fig. 6).329

We quantify the transition to DRV world by introducing a metric M that is inspired by our330

PV-based understanding of the growth of DRVs:331

M =
𝑚𝑎𝑥((𝑞1 ¤𝑞1 + 𝑞2 ¤𝑞2)2)
𝑚𝑎𝑥((𝑞2

1 + 𝑞
2
2)2)

(9)

(10)

where 𝑞𝑖 are the PV anomalies in each layer, and ¤𝑞𝑖 are the PV tendencies from latent heating in335

each layer. The maximum functions are taken as a spatial maximum for each snapshot, and the336

maximum could be at different locations for different maxima in the definition. M measures the337

collocation of PV anomalies with diabatic PV generation of the same sign which is a hallmark of338

latent-heating driven storms. The metric is normalized in such a way that it can be interpreted as a339

growth rate of moist storms, and we refer to it as the moist growth rate metric. For each simulation,340

the metric was calculated between 𝑡 = 100−250 in the turbulent phase of the simulation and then341

averaged in time. The results are shown in Fig. 7b as a function of 𝑟. The moist growth rate342

metric increases exponentially as 𝑟 is reduced with a marked increase for 𝑟 < 0.5 (Fig. 7c), and343
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Fig. 6. Snapshots of the relative vorticity in the upper layer of the moist QG simulations for (a) 𝑟 = 1, (b)

𝑟 = 0.5, (c) 𝑟 = 0.4, and (d) 𝑟 = 0.3. All simulations shown were run with the same radiative damping rate of

𝛼 = 0.15. As 𝑟 is lowered, the flow becomes increasingly dominated by small-scale vortices.

318

319

320

the increase is much more rapid than implied by “Clausius-Clapeyron scaling” (i.e., the increase in344

latent heating from reducing 𝑟 at fixed 𝑤 which would would imply M ∼ (1−𝑟)2). Taken together,345

the moist growth metric versus 𝑟 and the equilibration behavior of the simulations without radiative346

damping suggest that DRV world begins to emerge at approximately 𝑟 = 0.4.347

Fig. 7a shows the zonal- and time-mean zonal wind averaged over 𝑡 = 100− 250. 6 As 𝑟 is348

lowered, we find that the jet spacing widens. Even though the flow field is dominated by vortices349

at 𝑟 = 0.3, we see that there are still jets present (Fig. 7a). However, in the simulation run at350

𝑟 = 0.01 the jets have completely vanished (Fig. 1). However, the simulation at 𝑟 = 0.01 has to351

be run with a much stronger radiative damping (𝛼 = 1.7 instead of 𝛼 = 0.15) to reach statistical352

6Experimenting with different averaging times, we note that while the jet positions are fairly stable at 𝑟 = 1, they are less so at 𝑟 = 0.3 and the
jet position moves meridionaly over time.
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332

333

334

equilibrium. Thus while it seems likely that the full disappearance of the jets at 𝑟 = 0.01 is due to353

an even stronger vortex regime, we cannot rule out that it is caused by stronger radiative damping.354

3. DRVs in Turbulent Simulations of Moist Primitive Equation355

We now investigate strong diabatic storms in a set of more realistic simulations using the moist356

primitive equations. After nondimensionalization, the governing parameter that will be investigated357

is the Rossby number. Switching between high and low Rossby number regimes, while maintaining358

strong latent heating, will allow us to investigate the role of higher order terms in the PV dynamics359

beyond QG.360

a. Model Formulation361

The moist primitive equations in Boussinesq form, with constant planetary vorticity, 𝑟362

parametrization for latent heating, and Newtonian relaxation of temperature take the form363
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𝐷u
𝐷𝑡

+ 𝜇𝑢∇4u+ 𝑓0k×u = −∇𝜙−𝑅u, (11)

𝐷𝜃

𝐷𝑡
+ 𝜇𝜃∇4𝜃 = (1− 𝑟)𝑤𝜃𝑧 −𝛼 (𝜃 − 𝜃𝑟), (12)

𝑢𝑥 + 𝑣𝑦 +𝑤𝑧 = 0, (13)
𝑔

𝜃0
𝜃 = 𝜙𝑧, (14)

𝐷

𝐷𝑡
= 𝜕𝑡 +𝑢𝜕𝑥 + 𝑣𝜕𝑦 +𝑤𝜕𝑧, (15)

𝜃𝑟 =
𝑧𝜃0𝑁

2

𝑔
− 𝜃0

𝑔

𝑓0𝑈

𝐻
𝑦, (16)

where u = (𝑢, 𝑣) is the horizontal velocity field, 𝑤 is the vertical velocity field, ∇ is the horizontal364

gradient, 𝜙 is the geopotential height, 𝜃 is the potential temperature, 𝜃0 is the reference potential365

temperature, 𝜃𝑟 (𝑦, 𝑧) is a zonally uniform reference state that is constant in time, 𝑓0 is the constant366

Coriolis parameter, 𝑟 (𝑤) is the nonlinear reduction factor, 𝛼 is a radiative relaxation constant, 𝑔 is367

the gravitational constant, 𝐻 is the tropospheric height, 𝑈/𝐻 is the shear implied by thermal wind368

for the reference 𝜃𝑟 profile, 𝑁 is a constant static stability, 𝐿𝑦 is the domain length in the meridional369

direction, 𝑅 is a drag coefficient, and (𝜇𝑢,𝜇𝜃) are coefficients for horizontal hyperdiffusion.370

The equations are being forced by relaxing 𝜃 at a rate 𝛼 to a reference state 𝜃𝑟 with a constant371

static stability and a linear temperature variation in the meridional direction. In the vertical, the372

domain is bounded by vertical plates at 𝑧 = 0, 𝐻 with boundary condition 𝑤 = 0, where 𝐻 now373

represents the full tropospheric depth. Linear drag and small-scale dissipation are applied in the374

momentum equations. We have found it helpful to use a drag that is constant throughout the375

troposphere (rather than confined to the lower levels) to prevent the build up of small-scale vertical376

velocities in the upper levels particularly at high Rossby number. This build up may be due to377

spurious wave reflections at the boundary, and for simplicity we use a vertically constant drag for378

all simulations.379

The 𝛽 term is neglected here, since it was found to be negligible in the QG simulations and it380

would introduce a term linear in 𝑦 in the momentum equations that cannot be represented by the381

doubly-periodic Dedalus solver (Burns et al. 2020).382
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We make the model variables statistically homogeneous in the horizontal by considering the383

deviation 𝜃′ from the reference temperature, such that384

𝜃 = 𝜃𝑟 (𝑦, 𝑧) + 𝜃′(𝑥, 𝑦, 𝑧, 𝑡). (17)

Similarly for geopotential, we define385

𝜙 = 𝜙𝑟 (𝑦, 𝑧) +𝜙′(𝑥, 𝑦, 𝑧, 𝑡), (18)

where386

𝜙𝑟 = 𝑧2𝑁2/2− 𝑓0(𝑈/𝐻)𝑦𝑧. (19)

Plugging these decompositions into Eqs.11-15 leaves us with387

𝐷u
𝐷𝑡

+ 𝜇𝑢∇4u+ 𝑓0k×u = −∇𝜙𝑟 −∇𝜙′−𝑅u, (20)

𝐷𝜃′

𝐷𝑡
+ 𝑣𝜃𝑟,𝑦 +𝑤𝜃𝑟,𝑧 + 𝜇𝜃∇4𝜃′ = (1− 𝑟)𝑤𝜃𝑟,𝑧 + (1− 𝑟)𝑤𝜃′𝑧 −𝛼𝜃′, (21)

𝑢𝑥 + 𝑣𝑦 +𝑤𝑧 = 0, (22)
𝑔

𝜃0
𝜃′ = 𝜙′𝑧, (23)

𝐷

𝐷𝑡
= 𝜕𝑡 +𝑢𝜕𝑥 + 𝑣𝜕𝑦 +𝑤𝜕𝑧, (24)

Next, we nondimensionalize the equations using QG scaling (but keeping all terms) such that 𝑥, 𝑦 ∼388

𝐿𝐷 with deformation radius7, 𝐿𝐷 = 𝑁𝐻/ 𝑓0 , 𝑧 ∼ 𝐻, 𝑡 ∼ 𝐿𝐷/𝑈, u,v ∼𝑈, 𝑤 ∼ 𝜖𝑈𝐻/𝐿𝐷 where 𝜖 =389

𝑈/ 𝑓0𝐿𝐷 is the Rossby number, 𝜙′ ∼ 𝑓0𝑈𝐿𝐷 , 𝜃′ ∼ 𝜃0 𝑓0𝑈𝐿𝐷/𝑔𝐻 to obtain the nondimensionalized390

equations391

7The definition of the deformation radius is different here from the QG system discussed in section 2 because 𝐻 now refers to the full tropospheric
height, and we have dropped the

√
2. We will see from the numerical simulations that scaling the length scale like the deformation radius remains a

reasonable choice for the PV anomalies even in the presence of strong latent heating. In the DRV modal theory of Kohl and O’Gorman (2022), the
ascent length scale vanishes as 𝑟 → 0, but the PV anomaly in the descent area is sustained by a balance of growth and zonal advection leading to
an exponential decay length 𝐿𝐷/𝜎 where 𝜎 is the growth rate. But since the growth rate approaches 𝜎 = 1.62 in the limit of 𝑟 → 0, the length
scale of the PV disturbance also remains finite in this limit, at roughly 0.62𝐿𝐷 which is close to 𝐿𝐷 .
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𝜖
𝐷u
𝐷𝑡

+ 𝜇̃𝑢∇4u+k×u = 𝑧ey −∇𝜙′−𝑅u, (25)

𝐷𝜃′

𝐷𝑡
− 𝑣 +𝑤 + 𝜇̃𝜃∇4𝜃′ = (1− 𝑟)𝑤 + 𝜖 (1− 𝑟)𝑤𝜃′𝑧 − 𝛼̃𝜃′, (26)

𝑢𝑥 + 𝑣𝑦 + 𝜖𝑤𝑧 = 0, (27)

𝜃′ = 𝜙′𝑧, (28)
𝐷

𝐷𝑡
= 𝜕𝑡 +𝑢𝜕𝑥 + 𝑣𝜕𝑦 + 𝜖𝑤𝜕𝑧, (29)

with nondimensional numbers 𝜖 = 𝑈
𝑓0𝐿𝐷

= 𝑈
𝑁𝐻

, 𝑅 = 1
𝑓0
𝑅, 𝛼̃ =

𝐿𝐷

𝑈
𝛼, 𝐿̃𝑦 =

1
𝐿𝐷

𝐿𝑦, 𝜇̃𝑢 = 1
𝑓0𝐿

4
𝐷

𝜇𝑢, and392

𝜇̃𝜃 =
1

𝑈𝐿3
𝐷

𝜇𝜃 and unit vector in the meridional direction ey.393

We note that as a result of scaling horizontal length scales with the deformation radius, what394

we refer to as the Rossby number in these simulations 𝜖 = 𝑈
𝑓0𝐿𝐷

could also be interpreted as the395

Froude number 𝑈
𝑁𝐻

or the inverse square root of the Richardson number 𝑁2𝐻2

𝑈2 . We stick to the396

designation of Rossby number here to reflect the intuition that a low Rossby number limit recovers397

quasigeostrophic dynamics. Furthermore, we note that in the definition of the Rossby number𝑈/𝐻398

should be interpreted as the mean-state zonal wind shear (rather than, say, the local wind shear399

in a storm) and as such 𝜖 =𝑈/𝑁𝐻 refers to a mean-state Rossby number rather than the Rossby400

number of an individual storm (which could be much higher).401

The equations are solved using a spectral solver with adaptive time stepping (Burns et al. 2020)402

on a doubly periodic square domain of side 𝐿̃𝑦 = 6𝜋, with horizontal plates at 𝑧 = 0 and 𝑧 = 1 and403

128×128×10 grid points. Chebyshev polynomials are used as basis functions in the vertical (the404

grid spacing between the 10 vertical levels is close to uniform in the interior but slightly smaller405

towards the boundaries). The simulations are initialized with random conditions for all fields, after406

filtering out all wavenumbers with 𝑘 =

√︃
𝑘2
𝑥 + 𝑘2

𝑦 > 3 to avoid having to integrate a lot of small scale407

noise in the initial phase of the simulation. The simulations are run until 𝑡 = 160 and outputted408

every Δ𝑡 = 0.5.409

We run simulations with a high Rossby number 𝜖 = 0.4, an intermediate Rossby number 𝜖 = 0.1,410

and a low Rossby number 𝜖 = 0.01 while keeping the latent heating strong at 𝑟 = 0.01 in all411

cases. For reference, using typical scales 𝑈 = 10m s−1, 𝐿𝐷 = 1000km and 𝑓0 = 10−4s−1 and so412

the intermediate Rossby number 𝜖 =𝑈/ 𝑓0𝐿𝐷 = 0.1 is closest to typical Earth-like conditions. The413
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drag coefficient and momentum hyperdiffusion coefficient need to be smaller in the intermediate414

and low Rossby regime so that the ratios 𝑅/𝜖 and 𝜇𝑢/𝜖 remain approximately constant and the QG415

limit is properly recovered as 𝜖 tends to zero. For the high Rossby number run, we choose 𝑅 = 0.11416

and 𝜇𝑢 = 5×10−5, for the intermedidate Rossby number run 𝑅 = 2.75×10−2 and 𝜇𝑢 = 1.25×10−5,417

and the low Rossby number run 𝑅 = 2.75×10−3 and 𝜇𝑢 = 1.25×10−6.418

The hyperdiffusion for temperature is 𝜇𝜃 = 5× 10−5 in all cases. The radiative relaxation co-419

efficient was chosen to be 𝛼 = 0.35 for the high Rossby number simulation and 𝛼 = 0.6 for the420

intermediate and low Rossby number simulations. A higher relaxation coefficient was found to be421

necessary at intermediate and low Rossby numbers in order to stabilize the simulations. As we will422

see in the next section, while the simulations at intermediate and low Rossby number transition to423

DRV world similar to the QG simulations, the simulation at high Rossby number does not transi-424

tion to a DRV world. The need for a stronger relaxation with onset of the vortex regime is hence425

consistent with what was found for the QG simulations in which radiative damping was needed426

for equilibration when a DRV world emerged. We also explored primitive-equation simulations427

in which the background temperature gradient was not imposed but rather the temperature was428

relaxed to a cosinusoidal reference temperature. Thus, the radiative forcing is not as strong, and it429

is easier for the flow to equilibrate. Note that the cosinusoidal reference temperature was chosen430

because relaxation to a linear gradient is not possible in a doubly periodic solver. In this case we431

found that it is possible to run the simulations with the same relaxation coefficient for all Rossby432

numbers. Transition to DRV world at low Rossby number persists and the structure of storms is433

similar to what we present in the next section. We stick to the linear temperature gradient set-up434

here because its interpretation is simpler, and it makes a closer connection to the QG simulations435

discussed previously in section 2.436

b. Simulation Results437

Fig. 8 shows snapshots of the relative vorticity at a lower level (𝑧 = 0.15) and an upper level444

(𝑧 = 0.85), and the vertical velocity around mid-level (𝑧 = 0.42) in the macroturbulent phase of the445

simulations for the low and high Rossby number simulations.446

In the low Rossby number simulation (Fig. 8 b,d,f), the character of the flow is dramatically447

different from that in Earth’s midlatitude atmosphere. The flow field is not wave-like and is448
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Fig. 8. Snapshots of the relative vorticity at a lower (𝑧 = 0.15) and upper level (𝑧 = 0.85) and vertical velocity

(𝑧 = 0.42) around mid-level for (a,c,e) a low Rossby number simulation (𝜖 = 0.01), and (b,d,f) a high Rossby

number simulation (𝜖 = 0.4) run in the moist primitive equation simulations at 𝑟 = 0.01. At low Rossby number,

the flow is a DRV world with vorticity dipoles that propagate poleward. At high Rossby number, the poleward

propagation is slower and the flow has both vortices and fronts. Animations of the two simulations can be found

in Supplemental Videos S3 and S4.
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disrupted by vorticity dipoles, positive in the lower layer and negative in the upper layer of roughly449

equal strength. The vorticity dipoles continuously spawn and rapidly propagate poleward as can450

be most clearly seen in Supplemental Video S3. Similarly, the vertical velocity field breaks up451

into isolated vertical velocity maxima, associated with the vorticity dipoles, and is characterized452

by a large vertical-velocity asymmetry parameter 𝜆 = 0.88. The simulation is clearly a DRV world453

similar to the strong latent heating regime of the moist QG simulations.454

In the high Rossby number simulation (Fig. 8 a,c,e), by contrast, the vorticity in the upper455

troposphere is more wave-like and larger in scale. In the lower-troposphere, there are still smaller-456

scale vortices but these are now associated with prominent frontal bands. The vorticity field is457

stronger in the lower troposphere compared to the upper troposphere. The storms evolve more458

slowly, and while they still drift poleward, their primary propagation is eastward, as can be seen459

in Supplemental Video S4. The vertical velocity field is made up of frontal bands and localized460

maxima, resembling the midlatitude vertical velocity field in Earth’s atmosphere. The vertical461

velocity asymmetry parameter is 𝜆 = 0.75 which is similar to what was found in the reduced462

stability GCM simulations of O’Gorman et al. (2018) at 𝑟 = 0.01. The flow does not show signs of463

transition to a purely vortex dominated regime despite the strong latent heating.464

In the intermediate Rossby number simulation (Supplemental Video 5), the flow is vortex465

dominated, and we consider it to be still a DRV world. A stream of vortices that continously466

spawn and quickly propagate poleward can be clearly seen. However, the flow also retains some467

frontal features that were observed in the high Rossby number simulation. We conclude that the468

transition to a DRV world with decreasing Rossby number is gradual rather than abrupt.469

Next we turn to the PV structure of the storms for the high and low Rossby number simulations.470

We calculate the Ertel PV471

𝑄 = (1+ 𝜖𝜁)𝜃𝑧 − 𝜖2𝑣𝑧𝜃𝑥 + 𝜖2𝑢𝑧𝜃𝑦, (30)

where 𝜁 = 𝑣𝑥 −𝑢𝑦 and 𝜃𝑧 = 1+ 𝜖𝜃′𝑧, and subtract the zonal mean to define the PV anomalies. We472

also calculate the PV tendency from latent heating473

¤𝑄LH = 𝜖 (1+ 𝜖𝜁) ¤𝜃𝑧, (31)
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Fig. 9. Storm composite of Ertel PV anomaly (shading) and PV tendency from latent heating (contours)

for (a) the low Rossby number simulation (𝜖 = 0.01),(b) the intermediate Rossby number simulation (𝜖 = 0.1)

and (c) the high Rossby number simulation (𝜖 = 0.4). The contour interval is (a,d) 0.1, (b,e) 0.5 and (c,f) 2.1.

The zero contour line for the PV tendencies is not shown. Panels (d,e,f) show the same storm composites for

the low, intermediate, and high Rossby number simulation as in (a,b,c) but now the PV tendency includes the

contributions from latent heating plus vertical advection. Composite means were made over the 10 strongest

vertical velocity maxima at each output time between 𝑡 = 70−160.
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where ¤𝜃 = [(1− 𝑟 (𝑤))𝑤𝜃𝑧], and we have ignored contributions due to horizontal gradients of the474

heating profile. Equations 30 and 31 are derived in section a of the appendix. We then composite475

PV anomalies and PV tendencies over the 10 strongest vertical velocity maxima at each simulation476

output between 𝑡 = 70− 160 when the simulations are in statistical equilibrium. The results are477

shown in Figure 9 a,b,c for the low, intermediate and high Rossby number simulations.478

While the low Rossby number storms show a clear dipole structure both in terms of PV anomaly486

and PV tendency, the high Rossby number storms are made up of a strong low level positive PV487

anomaly only (Fig. 9,c). No strong negative PV anomaly is visible at the location of negative488

diabatic PV generation, although a weaker positive and negative PV anomaly signal is visible at489

the top boundary. Negative diabatic generation is weaker compared to positive diabatic generation.490

For the intermediate Rossby number regime, a clear negative PV anomaly is visible at the location491

of negative diabatic generation (Fig. 9b). Unlike in the low Rossby number case, at intermediate492
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Rossby numbers the negative PV anomaly aloft is weaker compared to the low level positive493

anomaly. While diabatic generation extends over the entire vertical extent of the domain at low494

and intermediate Rossby number, diabatic generation remains mostly confined to the lower part of495

the domain at high Rossby number. Overall, Fig. 9a-c shows the weakening of upper level PV496

anomaly and diabatic generation as the Rossby number is increased.497

If vertical PV advection −𝜖𝑤𝑄𝑧 is added to the PV tendency from latent heating (cf. Appendix498

a for derivation), the negative PV generation in the high Rossby number composite at 𝑧 = 0.5 is499

almost entirely cancelled, with a weaker signal persisting at the upper boundary (Fig. 9f). By500

contrast, negative generation persists for the low and intermediate Rossby number storms (Fig.501

9d,e).502

The PV structure of the low Rossby number storm resembles that of the small-amplitude DRV503

mode from theory (Fig. 3 in Kohl and O’Gorman 2022), while the PV structure of the high Rossby504

number storm resemble that of DRVs from reanalysis in the current climate (Fig. 10 in Kohl and505

O’Gorman 2022). The Rossby number is low for small-amplitude modes and high for storms in506

reanalysis, and hence the similarity between the low Rossby numbers storms and DRV modes, and507

between the high Rossby number storms and DRV storms in reanalysis is as expected.508

c. Discussion509

The primitive-equation simulations with strong latent heating show that changes in the Rossby510

number bring about important changes both in terms of the PV structure of individual storms and511

in terms of the overall circulation. In particular, low Rossby numbers make the simulations more512

like DRV world in which diabatically maintained PV dipoles continuously spawn and propagate513

poleward. At higher Rossby number, DRVs still occur but they have a different PV structure, they514

do not propagate as quickly poleward and they do not fully dominate the flow which now also515

includes frontal features.516

We note that for the high Rossby number storms (Fig. 9c), a weak positive PV anomaly at517

upper levels is visible westward of the strong low level positive PV anomaly, unlike in the low518

and intermediate Rossby number storms. This upper-level positive PV anomaly suggests that at519

high Rossby number there may be some growth induced from a type-C cyclogenesis mechanism520

as found in Ahmadi-Givi et al. (2004). We leave exploration of this to future work.521

26



4. Toy Model for the Vertical Structure of PV in Finite Amplitude DRVs522

We study a 1-D toy model for the vertical structure of PV in the ascent region of a DRV in order523

to understand why the PV structure is different at high versus low Rossby number. This model524

will also help to bridge the gap between the theory of DRV modes and finite-amplitude storms,525

although we emphasize that it is not a full model because the vertical velocity profile 𝑤 will be526

taken as given. This approach is similar to previous studies of the PV evolution given prescribed527

vertical velocity or heating profiles (Schubert and Alworth 1987; Abbott and O’Gorman 2024).528

The model equations are the thermodynamic equation with reduced stability parameterization of529

latent heating and the PV evolution equation:530

𝜕𝑡𝜃
′+𝑤𝜃𝑧 + 𝜖𝑤𝜃′𝑧 = ¤𝜃, (32)

𝜕𝑡𝑄 = 𝜖
𝑄 ¤𝜃𝑧

𝜃𝑧 + 𝜖𝜃𝑧
− 𝜖𝑤𝑄𝑧, (33)

where 𝜃𝑧 represents a background stratification that is assumed constant in time, and ¤𝜃 = (1−531

𝑟)𝑤𝜃𝑧 + 𝜖 (1− 𝑟)𝑤𝜃′𝑧 is the latent heating rate. We focus on a single vertical column (0 ≤ 𝑧 ≤ 1)532

in a region of maximum heating in the horizontal such that ¤𝜃𝑥 = ¤𝜃𝑦 = 0, approximate the PV as533

𝑄 = (1+𝜖𝜁)𝜃𝑧, which ignores the terms 𝜖2𝑣𝑧𝜃𝑥 and 𝜖2𝑢𝑧𝜃𝑦, and ignore any horizontal PV transport.534

A derivation is given in section b of the appendix. The toy model is evolved forward in time for a535

high (𝜖 = 0.4), intermediate (𝜖 = 0.1) and low Rossby number (𝜖 = 0.01) with the aim of matching536

the storms found in the moist primitive equation simulations (Fig. 9). The integration is started537

from the initial conditions 𝜃′ = 0 and 𝑄 = 𝜃𝑧. For the low and intermediate Rossby number we538

choose a constant background stratification 𝜃𝑧 = 1 and for the high Rossby number we choose a539

bottom-heavy stratification 𝜃𝑧 = 1+0.25𝑒(−(𝑧−0.2)/0.1) , since that is what was found for the storms540

in the simulations (not shown). The bottom-heavy stratification leads to bottom-amplified heating541

rates, per the 𝑟 parameterization of latent heating. The vertical velocity profile is fixed in time as542

𝑤 = sin(𝜋𝑧) which is symmetric about 𝑧 = 0.5. A vertically constant profile is again chosen for 𝑟543

with a value of 𝑟 = 0.01.544

The equations are evolved forward in time until 𝑡 = 1.2, which corresponds roughly to 𝑡 =550

1.2𝐿𝐷/𝑈 = 33h using typical scales 𝐿𝐷 = 1000km and 𝑈 = 10m s−1. The resulting PV anomaly551

27



-0.02 0 0.02
0

0.2

0.4

0.6

0.8

1

z

Low Rossby (const. strat.)

-0.4 -0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

z

Intermediate Rossby (const. strat.)

-5 0 5
0

0.2

0.4

0.6

0.8

1

z

High Rossby (bottom heavy strat.)
(a) (b) (c)

Fig. 10. PV anomaly profiles produced by the toy-model Eqs. (32-33) at 𝑡 = 0.5 using a value of 𝑟 = 0.01

for (a) a low Rossby number storm of 𝜖 = 0.01, (b) an intermediate Rossby number storm of 𝜖 = 0.1, and (c) a

high Rossby number storm of 𝜖 = 0.4. For the low and intermediate Rossby number storms we use a constant

background stratification, but for the high Rossby number storm we use a bottom-heavy stratification. The PV

anomalies are defined with respect to the initial conditions.
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profiles are shown in Fig. 10 where we have defined PV anomalies with respect to the initial PV552

profile.553

We focus first on the low Rossby number case (Fig. 10a). The PV profile has the typical dipole554

structure seen in the moist QG storms (Fig. 2), low-Rossby number storms of the moist primitive555

equation simulations (Fig. 9a), and the DRV modes from theory (Kohl and O’Gorman 2022). The556

PV is antisymmetric about the altitude of maximum ascent 𝑧 = 0.5. By contrast, the intermediate557

Rossby number case which also has a constant background stratification has stronger positive than558

negative PV anomalies (Fig. 10b) and its structure bears close resemblance to the storms found in559

the moist primitive equation simulations at intermediate Rossby number (Fig. 9b). The different560

magnitude of positive and negative PV anomalies arises because of the appearance of the PV in561

the diabatic generation term – the first term on the right-hand side of Eq. (33) – which amplifies562

the generation of positive PV anomalies but weakens the generation of negative PV anomalies,563

leading to a nonlinear feedback as the PV anomalies evolve. For the low Rossby number case, this564

feedback is negligible because the PV anomalies are too weak to strongly affect the PV and thus565

too weak to affect the diabatic PV production, but for the intermediate Rossby number case the566

feedback is important because the PV anomalies are larger. We also note that in Fig. 10b, vertical567

advection – the second term on the right-hand side of Eq. (33) – has begun to move the positive568

PV anomaly upwards so that the change from positive to negative PV anomaly no longer occurs at569
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about 𝑧 = 0.5 but instead at 𝑧 = 0.56. If the time integration is continued, the positive PV anomaly570

would keep being advected vertically and gradually begin to fill up the entire vertical column until571

no negative PV anomaly is left (not shown). This limit is spurious however, since the assumption572

of a sustained vertical velocity profile would break down.573

Looking at the high Rossby number case with bottom-heavy background stratification (Fig. 10c),574

we notice that the positive PV anomaly has grown even larger than for the intermediate Rossby575

number case. The PV structure is highly asymmetric in magnitude between positive and negative576

PV anomalies with the surface PV anomaly about 12 times stronger than the negative PV anomaly577

aloft. This is because the positive PV generation is larger at high Rossby number, and also because578

the bottom heavy stratification implies a bottom heavy heating rate. The vertical gradient of579

the heating rate, which affect the diabatic PV generation, is larger below the heating maximum,580

leading to stronger positive generation, and weaker above the heating maximum, leading to weaker581

negative PV generation. This signal then gets amplified by the nonlinear feedback between PV582

and the heating gradient leading to highly asymmetric bottom heavy storms as were found in the583

high Rossby number moist primitive equation simulations (Fig. 9c). If we consider high Rossby584

number but vertically constant background stratification, the asymmetry in PV structure is still585

substantial but not quite as large: the surface postive PV anomaly is about 4.5 times stronger than586

the negative PV anomaly aloft587

Due to the nonlinearity of the feedback between PV anomalies and diabatic PV generation, the588

strength of the low-level PV anomaly that is reached at the end of the integration is very sensitive589

to the magnitude of the Rossby number, the bottom-heaviness of the heating rate and the time590

over which the heating acts (here given by the integration time). For the high Rossby number591

storm, doubling of the Rossby number to 𝜖 = 0.8 leads to a surface PV anomaly that is about 5592

times larger (not shown). This sensitive dependence of the PV asymmetry on the Rossby number593

and the bottom-heaviness of the heating profile explains the differences found between the PV594

structure of the winter and summer DRV example discussed in Kohl and O’Gorman (2022). In595

that case, the winter storm was found to be more asymmetric in terms of the magnitude of positive596

versus negative PV anomalies (no clear negative PV identifiable) because it was a stronger storm,597

implying a higher Rossby number, with a more bottom-heavy diabatic heating profile.598
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5. Conclusions599

Finite amplitude effects in DRVs were explored in simulations of moist macroturbulence using600

the QG and primitive equations, and an attempt was made at synthesis in the form of a toy model601

of the vertical structure of PV.602

Moist QG simulations with a reduced stability parametrization transition from a state of wavy jets603

interspersed with vortices to a vortex dominated state (DRV world) as latent heating is increased.604

PV budget analysis revealed that the vortices in the strong latent heating regime are DRVs with605

diabatic generation dominating over meridional PV advection. The solutions are maintained by606

a balance between mean zonal advection, nonlinear advection and diabatic generation. This is607

very similar to the balances maintaining the small-amplitude DRV mode from theory, with the608

additional effect of nonlinear advection which leads to poleward self advection. DRV world begins609

to emerge at about 𝑟 = 0.4, which is similar to the condition of 𝑟 < 0.38 for DRV modes to exist on610

an infinite domain (Kohl and O’Gorman 2024). One piece of evidence that DRV world is starting to611

emerge near 𝑟 = 0.4 is that simulations run without radiative damping fail to equilibrate for 𝑟 ≲ 0.4612

due to explosive growth of a single vortex in the domain. We also quantified the transition to DRV613

world using a moist growth-rate metric that measures collocation of PV anomalies with diabatic614

PV generation of the same sign, and this showed a rapid pickup near 𝑟 = 0.4. It would be interesting615

to generalize and test this metric for storms in more realistic simulations and observations in future616

work.617

Multilevel simulations of the moist primitive equations in a doubly periodic configuration were618

run for a low, intermediate (closest to earth-like conditions) and high Rossby number regimes619

while keeping latent heating strong. The simulations show that changes in the Rossby number620

cause important changes in the overall macroturbulent flow and the PV structure of strong diabatic621

storms. At low Rossby number the zonal flow becomes disrupted by isolated vorticity dipoles622

which continously spawned and self-advected poleward. The vertical velocity field breaks up623

into isolated maxima with a strong asymmetry between upward and downward motion. At high624

Rossby number the flow maintains a wave-like structure in the upper troposphere, and there are625

a mix of DRV-like storms and frontal features such that there is not a pure DRV world. The626

storms primarily propagate eastward although still with some weaker poleward propagation. In the627

intermediate Rossby number regime, rapidly poleward propagating vortices emerged as in the low628
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Rossby number regime. However, the flow also retained some frontal features that were observed629

in the high Rossby number regime. We conclude from this that the transition to DRV world with630

decreasing Rossby number appears to be gradual rather than abrupt. While the PV structure of631

strong diabatic storms in the low and intermediate Rossby number simulations resembles that of632

the QG DRV storms and DRV modes, the PV structure of storms in the high Rossby number633

simulations are more asymmetric and bottom confined and resembled that of DRVs observed in634

the current climate. We conclude that higher order terms in the PV dynamics beyond QG play an635

important role in setting the structure of storms, their propagation, and the extent to which the flow636

is dominated by DRVs.637

Finite amplitude effects beyond the small-amplitude QG DRV theory were further explored638

within a simple toy model of the moist thermodynamic and PV equations in a single ascending639

column. The toy model was solved for a low, intermediate and a high Rossby number and found to640

reproduce much of the variety of storm structure found in the moist primitive equation simulations.641

For low Rossby numbers the diabatic PV tendency behaves like the vertical gradient of the latent642

heating profile (cf. Eq. 31). If the profile is symmetric this will lead to generation of positive and643

negative PV anomalies of equal magnitude, as was found for DRV storms in QG simulations and644

primitive equation simulations at small Rossby number. When the Rossby number is increased,645

the PV tendency is proportional to the product of the absolute vorticity and the heating rate -646

which amplifies the generation of positive PV anomalies but weakens the generation of negative647

PV anomalies, leading to a nonlinear feedback as the PV anomalies evolve. This leads to PV648

constellations where the low level positive PV anomaly is stronger than the negative PV anomaly649

aloft as was found in moist primitive equation simulations at intermediate and high Rossby numbers.650

In particular, it was found that when a strong Rossby number is coupled with a bottom heavy heating651

profile, which favors larger values of positive PV generation, this can lead to a feedback which652

rapidly generates strong low level PV anomalies with much smaller upper level negative anomaly653

- as is often found for DRVs observed in the current climate (e.g. Wernli et al. 2002, Kohl and654

O’Gorman 2022). Strong sensitivity of the asymmetry of the magnitude of negative versus positive655

PV anomalies was found to the degree of bottom heaviness of the heating rate and the magnitude656

of the Rossby number. Future work could investigate this sensitive dependence by looking at a657
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variety of realistic storm systems relating the vertical profile of heating rates to the magnitude of658

the PV anomalies.659

Given that a negative PV anomaly is required for diabatic growth and poleward self-advection,660

the results lead us to the following speculation. In the current climate, where heating rates are more661

bottom heavy, diabatic generation leads to the rapid genesis of low level positive PV anomalies.662

The negative PV anomaly is quickly eroded away (or at least does not grow as quickly as the positive663

PV anomaly) limiting diabatic growth and poleward self advection. Meanwhile the diabatically664

generated positive PV anomaly has become sufficiently large in amplitude to be able to undergo665

nonlinear interaction with upper level PV anomalies in a later secondary growth process (Wernli666

et al. 2002).667

The Rossby number in our simulations is given by 𝜖 =𝑈/ 𝑓0𝐿𝐷 =𝑈/𝑁𝐻 where 𝑈/𝐻 should be668

interpreted as the mean-state zonal wind shear (rather than, say, the local wind shear in a storm).669

Hence, smaller Rossby numbers could be achieved by weaker mean zonal shear or stronger static670

stability 𝑁 , both of which could occur at least regionally in a warming midlatitude climate. Future671

work could investigate the extent to which there is a transition to a more vortex dominated flow672

(or even a full DRV world) in GCMs in warm and moist climates when the Rossby number is low,673

e.g. by varying the strength of the midlatitude jet. This could confirm whether the tendency for a674

more vortex dominated flow to occur at low Rossby number and with strong latent heating holds675

in models with a more realistic representation of moist physics.676
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APPENDIX682

a. PV equation for the primitive-equation model683

Eqs. (11-14) can be combined into an equation for the PV 𝑄 (Vallis 2017, his Eq. 4.96)684

𝐷𝑄

𝐷𝑡
= ( 𝑓0 + 𝜁) ¤𝜃𝑧 − 𝑣𝑧 ¤𝜃𝑥 +𝑢𝑧 ¤𝜃𝑦, (A1)

where685

𝑄 = ( 𝑓0 + 𝜁)𝜃𝑧 − 𝑣𝑧𝜃𝑥 +𝑢𝑧𝜃𝑦, (A2)

¤𝜃 = (1− 𝑟)𝑤𝜃𝑧, (A3)

𝜃𝑧 = 𝜃𝑧 + 𝜃′𝑧, (A4)
𝐷

𝐷𝑡
= 𝜕𝑡 +𝑢𝜕𝑥 + 𝑣𝜕𝑦 +𝑤𝜕𝑧, (A5)

𝜃𝑧 is a background stratification, and we have ignored the drag, relaxation and hyperdiffusion686

terms in Eq. (A1). Nondimensionalizing the vertical potential temperature gradients like 𝜃′𝑧 ∼687

𝜃0 𝑓0𝑈𝐿𝐷/𝑔𝐻2, 𝜃𝑧 ∼ 𝜃0𝑁
2/𝑔, the PV like 𝑄 ∼ 𝑓0𝜃𝑧 = 𝑓0𝜃0𝑁

2/𝑔 and the rest of the variables with688

scales as outlined in section (3), we obtain the nondimensional PV equation689

𝐷𝑄

𝐷𝑡
= 𝜖 (1+ 𝜖𝜁) ¤𝜃𝑧 − 𝜖2𝑣𝑧 ¤𝜃𝑥 + 𝜖2𝑢𝑧 ¤𝜃𝑦, (A6)
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where690

𝑄 = (1+ 𝜖𝜁)𝜃𝑧 − 𝜖2𝑣𝑧𝜃𝑥 + 𝜖2𝑢𝑧𝜃𝑦, (A7)

¤𝜃 = (1− 𝑟)𝑤𝜃𝑧, (A8)

𝜃𝑧 = 𝜃𝑧 + 𝜖𝜃′𝑧, (A9)
𝐷

𝐷𝑡
= 𝜕𝑡 +𝑢𝜕𝑥 + 𝑣𝜕𝑦 + 𝜖𝑤𝜕𝑧 (A10)

and all variables are now nondimensional. Eq. (A7) corresponds to Eq. (30) used for the PV in691

section (3), where in that section we use a background stratification equal to the reference state692

such that 𝜃𝑧 = 1+ 𝜖𝜃′𝑧. The first term on the rhs of Eq. (A6) corresponds to Eq. (31) used for the693

PV tendency from latent heating in section (3).694

b. Derivation of the governing equations for the 1-D toy model of vertical PV structure695

If we place ourselves at the location of the heating maximum ¤𝜃𝑥 = ¤𝜃𝑦 = 0, neglect all horizontal696

transport of PV, and neglect the higher order vertical shear terms in the PV, then Eqs. (A6) and697

(A7) simplify to698

𝜕𝑡𝑄 + 𝜖𝑤𝑄𝑧 = 𝜖 (1+ 𝜖𝜁) ¤𝜃𝑧 (A11)

𝑄 = (1+ 𝜖𝜁)𝜃𝑧, (A12)

which we can rewrite as699

𝜕𝑡𝑄 = 𝜖
𝑄 ¤𝜃𝑧

𝜃𝑧 + 𝜖𝜃′𝑧
− 𝜖𝑤𝑄𝑧, (A13)

which is the form of the PV equation (Eq. 33) used in the simple 1D toy-model in section (4).700

The thermodynamic equation in the simple 1-D toy model (Eq. 32) is derived similarly to701

Eq. (26) but neglecting horizontal advection of perturbation 𝜃′ and reference theta (the 𝑣 term),702

neglecting hyperdiffusion and radiative relaxation, and using 𝜃 in place of 𝜃𝑟 .703
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