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Abstract. We consider Eulerian two-point, two-time correlations of a turbulent
velocity field and those of a passive scalar mixed by a turbulent velocity field.
Integral expressions are derived for the modal time-correlation functions of
the velocity and scalar fields using the stretched-spiral vortex model. These
expressions are evaluated using asymptotic methods for high wavenumber and,
alternatively, using numerical integration. If the motion of the centres of the
vortex structures is neglected, then an inertial time scaling (ek?)~'/3, where € is
the energy dissipation rate and k£ the wavenumber, is found to collapse the velocity
and scalar modal time-correlation functions to universal forms. Allowing the
centres of the vortex structures to move introduces a sweeping time scale, (uk) ™,
where u is the rms velocity of the centres of the vortex structures. The sweeping
time scale dominates the inertial time scale for sufficiently large wavenumbers.
Results are also reported for a direct numerical simulation of passive scalar mixing
by a turbulent velocity field at a Taylor Reynolds number of 265. The velocity and
scalar modal time-correlation functions were calculated in the simulation. They
coincide for large enough wavenumbers and are found to collapse to universal
forms when a sweeping time scale is used.
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1. Introduction

A fundamental but still disputed property of isotropic, homogeneous turbulence is the
characteristic time scale over which the small scales of the velocity field decorrelate in an Eulerian
frame of reference. Kolmogorov scaling in the inertial range suggests the inertial eddy-turnover
time, (ekQ)*l/ 3 where € is the energy dissipation rate and k the wavenumber. There is, however,
also evidence that the relevant time scale is the ‘sweeping’ time, (umsk) ™!, where s is the rms
velocity [1]-[5]. Knowledge of the correct time scaling would be useful, for example, as an input
to the recent functional derivative closure (FDC) [6] for random advection of a passive scalar,
and for interpreting the importance of the random sweeping effect [1]. In addition, Eulerian
decorrelation time scales are important in the problem of sound generation by turbulence (see
[7]). Also of interest is the characteristic time scale of the small scales of a passive scalar mixed
by a turbulent velocity field.

The velocity modal time correlations are the time correlations of the Fourier modes of the
velocity field and so are a two-time, two-point statistic. Several attempts have been made to
use characteristic time scalings to collapse these correlations to a universal form. The main
experimental work is by Comte-Bellot and Corrsin [8] in decaying grid turbulence and is at
a maximum Taylor Reynolds number R) of 72. They achieved a collapse of the modal time
correlations using a parallel combination of four different characteristic time scales. DNS studies
by Orszag and Patterson [2] at Ry ~ 16, by Gotoh et al [3] at Ry ~ 46, by Kaneda et al [4] at
Ry ~ 126 and by Sanada and Shanmugasundaram [1] at Ry ~ 200, all found the ‘sweeping’ time
scale to be dominant.
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Kraichnan [5], studied the modal time correlations and made a simple linearized estimate
and also an estimate based on the direct interaction approximation (DIA), both of which
resulted in the ‘sweeping’ time being the characteristic time scale. McComb et al [9] studied
numerical solutions to the DIA and local energy transfer (LET) theories and, in contrast to
Kraichnan’s asymptotic prediction for the DIA, found that while neither the ‘sweeping’ time
scale nor the inertial eddy-turnover time scale were completely effective in collapsing the modal
time-correlation data, the inertial scaling became more dominant for both theories as Ry was
increased. Finally, Gotoh et al [3] studied the modal time correlation using both DNS and DIA
at Ry ~ 35 and found that the sweeping time scale gave a poor collapse of the correlation data
from the DIA relative to the data from the DNS.

The sweeping effect is also found to be important for the Eulerian frequency spectrum of
turbulence. Tennekes [10] studied this one-point, two-time statistic and found a simple relation
between the Eulerian frequency spectrum and the energy spectrum using a sweeping hypothesis.
Malik and Vassilicos [11] found this relation to be valid for a number of different types of
randomly advected vortex tubes, including a particular realization of an inviscid Lundgren spiral
vortex sheet. Finally, Yeung and Sawford [12] extended the study of the Eulerian frequency
spectrum and random sweeping to the passive scalar and found that the Tennekes relation
between frequency and wavenumber spectra gave similarly shaped spectra for the scalar. Here,
we will study the modal time-correlation function, which differs from the Eulerian frequency
spectrum in that it gives the time correlation at a particular length scale.

The stretched-spiral vortex model of turbulence, introduced by Lundgren [13], uses an
ensemble of tube-like vortex structures to model the fine scales of turbulence. The vortex tubes
are assumed to be straight, with no dependence of the velocity field on the coordinate parallel
to the tube axis. The vortex tubes do not interact with each other, except that they are
stretched on average by the surrounding flow. In each structure, the vorticity is evolved by the
Navier—Stokes equations using a solution that is asymptotically correct for large time. The non-
axisymmetric part of the vorticity is wound up into a spiral by the differential rotation of the
cores of the vortices. The vortex structures are continuously created by a process external to the
model, such as vortex coalescence. Each structure then decays over time, so that a statistically
stationary state is reached. Average flow statistics are initially interpreted as an average over all
space, including, at any instant, many different structures at different times in their evolution.
An ergodic hypothesis is then invoked to convert this volume average over all space to a volume
and time average of an ensemble of individual structures with different orientations. In the case
of the vorticity field, where much of the intense vorticity is concentrated in localized regions [14],
neglect of the overlapping regions of the vortex structures is reasonable; however, for the scalar
and axial velocity fields, this approximation is more difficult to justify.

The stretched-spiral vortex model gives results in agreement with classical scaling arguments
for one-time, two-point statistics, such as the energy spectrum [13] and the scalar spectrum [15].
By also performing an average over vortex orientation, the model was used to calculate vorticity
and velocity-derivative moments [16], one-dimensional spectra [17] and the velocity-scalar cross
spectrum [18]. The model has also been extended to the compressible case (see [19]).

Here, we will use this model to calculate the modal time correlations of the velocity field,
as well as the modal time correlations of a passive scalar field. We also report the results of
a high-resolution (5123) direct numerical simulation of turbulent mixing of a passive scalar by
forced box turbulence, including results for the modal time correlations of the velocity and the
scalar. The DNS results are compared with the theoretical results of the stretched-spiral vortex
model.

In section 2, we define the modal time-correlation functions for the velocity and the scalar
and briefly discuss some of their properties. Expressions for these functions are derived using
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the stretched-spiral vortex model in sections 3.1 and 3.2, and these expressions are evaluated
asymptotically in section 3.3 and numerically in section 3.4. The effect of motion of the centres
of the vortex structures is considered in section 3.5. Finally, in section 4, the DNS results are
reported and compared with the stretched-spiral vortex model.

2. The modal time-correlation function

We consider homogeneous turbulence and begin by defining the two-time, two-point velocity
correlation at time ¢ by

Rij(r,t,0) = ui(x,t)uj(x +r,t +0), (1)
where the overbar is taken to be an ensemble average. Then, the shell-summed two-time velocity
cross-spectrum at time ¢ is defined by

1 )
Qij(k,t,0) = (2w)3/S/VRij(I‘,t,U)e_‘k'rdrko, (2)

where the integral over V indicates a volume integral over all space and the integral over S
indicates a surface integral over a spherical shell in wavenumber space. Note that this shell
average in wavenumber ensures that Q;;(k,t,0) is a real quantity. The usual shell-summed
energy spectrum is given by E(k,t) = 1/2Q;;(k,t,0), where the summation over j is implied.
The modal time-correlation function at time t, R(k,t, ), is then defined by (see [8])

Qjj(k,t,0)
2(E(k,t)E(k,t + o))"/
so that R(k,t,0) = 1. It is straightforward to show that

| — (4)
do

R(k,t,0) = (3)

o=0
even when the turbulence is non-stationary (see appendx A). We will be concerned with the case
of stationary turbulence, so that we may omit references to ¢t and define
Qjj(k,0)
R(k,0) = ————=. 5
Similarly, for a passive scalar ¢(x,t), we define the two-point, two-time scalar correlation
function R¢(r, o) by

Ri(r,0) = c(x, t)e(x+r,t + 0), (6)
the shell-summed, two-time scalar cross-spectrum Q°(k, o) by
1 .
Q(k,0) = ——3 / / RE(r, 0)e *T dr dQ, (7)
2m)% Js Jv
and the scalar modal time-correlation function R°(k, o) by
Q°(k,0)
Re(k,0) = ——+~= 8
( ’0) Ec(k) ’ ( )

where E°(k) = Q°(k,0) is the scalar power spectrum. It is easily verified that the property
(3/90)R(k,0)|s=0 = 0 also holds.
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3. Application of the stretched-spiral vortex model

We wish to calculate the modal correlation functions using the stretched-spiral vortex model.
For the moment, we will assume that the centres of the vortex structures are stationary; the
velocity and scalar modal correlation functions will be denoted R(k, o) and R¢(k, o) respectively
in this case. Gross motion of the vortex structures will be considered in section 3.5.

3.1. Modal time correlations of stretched vortex structures

Here, we will calculate R(k,o) and R°(k, o) for a collection of stretched vortex structures. To
perform the simplest possible analysis, at least as a first step, we assume that the velocity and
scalar fields in each vortex structure have no dependence on the axial coordinate. For the same
reason, we neglect the contribution from the axial velocity, and we consider the statistically
isotropic case, without a mean scalar gradient. See O’Gorman and Pullin [18] for an example of
the inclusion of effects of a mean scalar gradient in the stretched-spiral vortex model.

Each vortex structure is embedded in an axisymmetric background strain field, characterized
by a strain rate a. The strain field is assumed to arise as a result of the other vortex
structures, and it is important because it allows the model to include the phenomenon of vorticity
enhancement by stretching. The velocity field in a typical stretched vortex tube may then be
decomposed as

U; = Ui(l’l? x9, t) + ai(t)wu (9)

where summation over i is not implied, a1 = a3 = —a/2, a3 = a, a > 0, and the strain rate a
is assumed constant. Note that we are now working with coordinates centred in the vortex
structure and with the x3 direction aligned with the vortex axis. We will make use of the
two-dimensional Fourier transform of the velocity field, 0;(k1, k2,t), defined by

1 oo oo ] )
7A)j(kl’ kQa t) = m / / eilklxlﬂkﬂ?i}j (xl, X9, t) dl‘l dJZQ, (10)
—oc0 J -0

and similarly for the scalar field.

As discussed in section 1, we now interpret the ensemble average in the definition of the
modal time-correlation functions as a volume average over all space, which we then convert, by
means of an ergodic hypothesis, to a volume, time and orientation average for a single vortex
structure. Further details and discussion of the interpretation of this averaging process may be
found in [13]. Our starting point is equation (B16) from Pullin and Saffman [16] for a general
cross-spectrum, applied to Q;;(k,o) and Q°(k,o) and modified to include a time average over
the lifetime of the vortex,

oo p2m
Qjj(k,0) = 4772Nk:/ / 0 (K1, ko, t)f;;‘(k:l, ko, t + o) dOy S(t) dt, (11)
0 Jo

oo p2m
Q(k,0) = 47T2Nk:/ / é(ky, ko, t)¢* (K, ko, t + o) dOy S(t) dt, (12)
0 Jo

where ki1 = kcosf and ko = ksinf. Here, S(t) = exp(at) is a stretching factor due to the
uniform strain rate a and N is the rate of creation of vortex tube length per unit time and per
unit volume. Note that the stretching factor is S(t) rather than S(t + o), since we take the
length of the shorter tube when considering correlations between two tubes of different lengths.

We must now decide on an appropriate expression for E(k) in the definition of R(k,o)
(equation (5)). Guided by the definition of R(k,t,o) for non-stationary turbulence, we take a
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geometric average of the energy spectra associated with the velocity fields starting from ¢ = 0
and o,

oo 27 1/2
E(k) = (27r2Nk: / / b;(K1, ko, )05 (ky, ko, t) dB), S(t) dt>
0 0

oo 27 1/2
X (2772Nk/ / 0j(k1, k2, t + o) 07 (K1, ko, t + o) dOx S(2) dt) . (13)
Note that we choose S(t) rather than S(t + o) in the second term in parentheses, so that NN is

still the correct normalization factor. It is straightforward to check that when expressions (11)
and (13) are used in definition (5), then property (4) remains valid. Similarly, we choose

oo 21 1/2
E¢(k) = (47T2Nk /0 /0 é(kl,kg,t)é*(kl,kg,t)dekS(t)dt)

oo p2m 1/2
x <47r2NI<:// é(kl,kg,t+a)é*(k:l,kg,t+a)d9kS(t)dt> . (14)
0 JO

If the velocity field of the vortex decays sufficiently fast away from the origin, we have that
Oy (K1, k2, t) = i k2 €mnkm@n (k1, k2, t), where w; (w1, T2,t) is the vorticity field and &; (ky, ks, t) its
Fourier transform. Assuming that w; = wo = 0 and using k;&; = 0, it is then easy to show from
equations (5) and (11) that

_ 1 oo p21
R(k,0)E(R) = 27N /0 /0 (ks oy )5 (koo £+ 0) A6, S() de,  (15)

where E(k) is given by

1 2w 1/2
E( = <k27r2N/ / (,U3 kl,kg, (kl,kQ,t) d9k5<t)dt)

o 1/2
(2W2N// (ke byt + o) (kl,kg,t+a)d6k5()dt> . (16)

We now decompose ws(r,0,t) as ws(r,0,t) =Y > wy(r,t)exp(ind), where w,(r,t) =
w*,(r,t). The identity

21
/ exp(inf — ikr cos(0 — 0x)) df = (—1)" 2w J,, (kr) exp(infy), (17)
0
can then be used to give
1 oo
@3 (k, Ok, 1) = o ; " exp(inby) I, (k, 1), (18)
where
L (k. t) = / wn (1 ) T () dor (19)
0

Then, we have that

Sont o Jo (k) I (k, t + o) S(t) dt
(2 n=oo An(k, a>> P Ak 0)
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where

o0

A (ko) = / (ks t + 0)|2S(¢) dt. (21)
0

This can be simplified by using I_, =I:(—1)" to give that I_,(k,t)I*, (k,t+0)=

I (k,t)L,(k,t + o). Omitting the zeroth harmonic contribution, we have that

5 Y1 Jo RelIn(k, )15 (k,t +0))S(t) dt

R(k,0) = . 22
) = e A o) P, Ak, 0))17 22)
Similarly for the passive scalar,
N o [ Re(I¢(k,t)I¢*(k,t S(t)dt

(Xony A (R, 0)V2(3002 A (k, 0))1/2

where ¢(r,0,t) =27 cy(r,t)exp(ind), and AS and IS are defined by replacing w, with ¢,

n=—oo

in equation (19) and I,, with I in equation (21).

3.2. Use of the stretched spiral solutions

To evaluate expressions (22) and (23) for R(k,o) and R¢(k, o) respectively, we need to specify
solutions for wy,(r,t) and ¢, (r, t). The stretched-spiral vortex model uses solutions of the Navier—
Stokes equations and the advection—diffusion equation that are asymptotically accurate for large
time. These solutions capture the winding up over time of the non-axisymmetric component of
the vorticity and scalar fields.

Following Lundgren [13], we introduce the stretched coordinates, p and 7, given by

p= SV, 7= %(S(t) _ 1), (24)

Lundgren has shown that, given any solution w??(p,#,7) to the (unstretched) two-dimensional
vorticity equation, a corresponding solution for the vorticity in the stretched vortex tube is given
by ws(r,0,t) = S(t)w?¥(p,0, 7). Tt was also shown that the non-axisymmetric part of w??(p, 0, 1)
evolves on much faster time scales compared with the axisymmetric component, so that we can
make the approximation that the zeroth harmonic, wgd( p), is independent of 7. The azimuthally

averaged angular velocity Q(p) is related to w2?(p) by

13(r’Q
s =108 (25)
p op

and we also define the derivative A(p) = dQ2(p)/dp. Then, the following approximate solution
to the Navier—Stokes equations is asymptotically accurate for large time:

wa(r,t) = S(1) fu(p) exp(=inQ(p)T — vn®A(p)*r°/3), n > 1. (26)
Here, v is the viscosity, and the arbitrary functions f,(p) specify the initial condition of the
vorticity.
The scalar differs from the vorticity in that it is not amplified by stretching, and it can be
shown that [15]
ea(r,) = ga(p) exp(—inQp) — Dn?A(p)*7/3), n>1 (27)
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is a solution to the scalar advection—diffusion equation, asymptotically accurate for large time,
where D is the diffusivity and g, (p) are arbitrary functions specifying the initial condition for
the scalar.

To find quantitative results for R(k,o) and R°(k,o), it will be necessary to specify the
functions f,,(p), gn(p) and Q(p), as well as the strain rate a. The viscosity and diffusivity may
be regarded as external parameters. One strength of the stretched-spiral vortex model is that
many flow statistics show a universal character, independent of specific choices for f,,(p), gn(p),
Q(p) and a. For example, Lundgren [13] showed that the form of the wavenumber dependence
of the energy spectrum resulting from the stretched-spiral vortex model was independent of the
specific choice of these quantities. At the same time, since there are many internal parameters
in the model, the resulting expressions are not solely determined by dimensional analysis.

3.3. Asymptotic evaluation

We will now use an asymptotic analysis to evaluate the expressions (22) and (23) for R(k,0)
and R°(k, o), respectively. Firstly, we concentrate on R(k,o) and use the method of stationary
phase to evaluate I, (k,t) for large wavenumber and large time [13]:

k) = [ (G i ) Do) esplinf2o)r = iAo 3)odl

= (14 ar) 0 falps) (nA(pa)r) A2

x exp(i(—kps(1 + aT)_1/2 —nQ(ps)T —7/4) — n2T3uA2(ps)/3), (28)

where we have assumed A(p) is monotonic, A(p) = dA(p)/dp and the point of stationary phase
ps is given by k + nA(ps)7(1 + ar)'/? = 0. Furthermore, assuming that only large (a7) will be
important gives

kn " A(ps) " ta V232 =140 <1> : (29)

aT

The integral I,,(k,t + o) is approximated by the right-hand side of equation (28) evaluated at
t 4+ o, so that 7 is replaced by

7_/: 2((3@0(&7__’_1)_1)’ (30)

and p; is replaced by pl,, where k + nA(pl)7' (1 + ar’)1/2 = 0. Noting that A2(p.)7"* ~ A2(ps)7>
for a given n and k implies that the viscous parts of I,,(k,t) and I,,(k,t + o) are similar for large
(aT).

We now restrict the range of delay times o that we are concerned with, so that we can
relate I, (k,t+ o) to I,(k,0). Let L be the characteristic length scale for Q(p), and for
simplicity, assume, that this is the same for f,(p). We then restrict attention to the range
(kL)*3(ac)? < 1 and (kL) > 1, so that (ac) < 1. This corresponds to length scales smaller
than the characteristic size of the vortex structure and to time scales smaller than the stretching
time of the background strain field. However, (kL)?/3(ac) is assumed to be of order one or
greater. Then, to leading order p ~ ps, fn(ps) = fu(ps), T2~ 75 and A(p)) ~ A(ps), where
higher-order terms are a factor (ac) smaller in magnitude. However, care must be taken with
the argument of the complex exponential in equation (28), hy(p) = —kps(a)™/2 — nQ(ps)7.
When we substitute our asymptotic expressions for I, (k,t) and I,(k,t + o) in the numerator
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of equation (22) for R(k,o), then (hn(p,) — hn(ps)) cannot be neglected. By changing the
integration variables from ¢ to ps in equation (22), we find that

R(k' o)~ Zflozl n~43 fooo A(PS)74/3‘fn(PS)|2ps cos(hn(ps) — hn(ps)) dps
’ 220:1 n=4/3 fooo A(P8)74/3|fn(08) 2ps dps
The viscous parts of I,(k,t 4+ o) and I,(k,t) are identical and independent of ¢ to within the

current approximation and so factor out.
It remains to find h,(p}) — hy(ps) to leading order (see appendix B). The result is

(31)

h(ph) = ha(ps) = K*Pon'2a*s(ps) + O((kL)**(a0)?) + O(ac), (32)

where

o ‘A(ps)|1/3ps Q(p)
‘“””( 2 ‘|A<ps>\2/3>' (32)

The analysis in appendix B shows that the first term in (33) is related to the radial motion due
to stretching in time o, and the second term is related to winding by the vortex core in time o.
Substituting into equation (31), we find

Rlk.o) ~ S ™ [ A (o) |7V £u(ps) P ps cos(K2 2an/3a*/3s(ps)) dps
’ Z;L.oil n—4/3 fooo ’A(p5>‘_4/3‘fn (ps) PPS dps ’

and so to leading order R(k‘, o) only depends on k and o in the combination k*/3c, in a similar
way to the inertial time scaling.

The analysis for the scalar goes through in largely the same way. Comparing the expressions
for the vorticity (26) and the scalar (27), we see that the scalar and the vorticity differ by a
stretching factor S(t). This leads to an extra factor (a7)~' ~ k=2/3n2/3|A(p,)|*/?a=%/ in the
approximation for I¢(k,t), and we find that

RC(k’ o) ~ Zfzozl fooo ‘gn(ii)‘QPZOCOS(kQ/anl/Saz/SS(pS)) dps '
Zn:l f() |gn(ps)]?ps dps

It is interesting to note that there is no dependence on the diffusivity in expression (35).

We now make a further assumption that a ~ (e/(15v))'/2, on the basis of the rms value of
the strain rate in isotropic turbulence. Other values of a?v/e have been proposed (see [16, 20]).
Letting I" and L be the characteristic circulation and length scales respectively of the vortex
core, we find that the dependence on k in expressions (34) and (35) is of the form

1/3
k23gel /3 <£> . (36)

Thus the winding by the vortex core and the radial motion due to stretching have led to an inertial
time scale k=2/3¢71/3 although there is also a dependence on the vortex Reynolds number /v
Note that vorticity amplification due to stretching is not important to the leading order and
that the preceding analysis is valid in the dissipation range as well as the inertial range.

(34)

(35)

3.4. Numerical evaluation

The integrals in expressions (22) and (23) for R(k,o) and R°(k,o) were evaluated numerically,
using an implementation of adaptive Gauss—Konrod integration in the GNU Scientific Library
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[21]. It should be noted that the asymptotic solutions (26) and (27) were once again used for
the non-axisymmetric vorticity and scalar fields. The results are expected to be more accurate
than the asymptotic approach of section 3.3, but specific choices have to be made; for example,
the precise form of £2(p) must be specified.

We first define the non-dimensional quantities (indicated with an overbar), r = 7L, 0 = 6 /a,
t=t/a, w, = wn(7,t)[ /L% cp = (7, t)ce, Q= Q(F)T/L?, A= A(F)I'/L? and k = k/L. Here,
L is the characteristic length scale, I" the characteristic circulation of the vortex and c. a
characteristic value of the scalar. We also define the Kolmogorov length scale = (1% /€)'/*, and
estimate the strain rate as a = (¢/15v)'/2, where e is the energy dissipation. The Schmidt number
was set to unity, and the following choices were made for the two remaining non-dimensional
numbers:

r L /2
— =10, = =154 <> : (37)
v n v
These values were chosen because they were found numerically to give a clear inertial range
for the energy spectrum obtained from expression (13). The initial conditions for the non-
axisymmetric part of the vorticity and the scalar were chosen to be

é1(7,0) = @1(7,0) = Aexp(—7),
En(7,0) = B (7,0) =0, |n| > 1, (38)

where R(k, o) and R°(k, o) are independent of the non-dimensional constant A. The azimuthally
averaged angular velocity was chosen to be Q(F) =7 '/2exp(—72), ensuring that A(F) is
monotonic (see later in this section). The viscous diffusion of the vortex core was neglected.

The resulting graphs for R(k,o) and R°(k, o) are shown in figures 1(a) and (b) at k = 200
and figures 2(a) and (b) at k = 3000, compared with their asymptotic expressions (34) and
(35). Numerical evaluation of expression (13) for E(k) (setting o = 0) indicates that k = 200 is
representative of the inertial range and that k& = 3000 is representative of the dissipation range
(see figure 3). The agreement between the asymptotics and the numerical results is reasonable
for k2/36% small enough, with better agreement for the higher value of k. However, the main
success of the asymptotic analysis is in capturing the (EQ/ 35) dependence.

Similar results were found for other choices of Q(7), @,(7,0) and ¢,(7,0), as long as A(F)
was monotonic. If A(7) is not monotonic as, for example, for a Gaussian angular velocity
Q(7) = exp(—7?), then there will be more than one point of stationary phase in the asymptotic
analysis, and our results (34) and (35) are no longer valid. Numerically, we find that, for a
Gaussian Q(r), the dependence on k and o is of the form (k°/65). Finally, it is noted that
R(k,o) and R¢(k,o0), calculated using the stretched-spiral vortex model, do not necessarily
remain positive, unlike results from direct numerical simulations and experiments.

3.5. Vortex structures with moving centres

We are considering two-time statistics and the preceding analysis is valid only if the centres
of the vortex structures remain stationary. We will now generalize to the case where the
vortex structures are allowed to move with a constant velocity relative to the frame in which
measurements are made. Our treatment of the sweeping effect on the vortex structures is similar
to the model problem that Kraichnan [22] considered to demonstrate the effects of convection
in Eulerian turbulence closure theory. Each structure in the ensemble has its own velocity, U,
with the probability distribution for this velocity assumed to be isotropic and independent of all
other parameters (e.g. vortex orientation). We denote the velocity in a frame moving with the
vortex structure by u(x’), where x’ are structure-fixed coordinates. The velocity in the vortex
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Figure 1. (a) R(k,0) and (b) R°(k, o) for k = 200 from the stretched-spiral vortex
model with stationary vortex structure centres. Numerical evaluation ( ) and
asymptotic evaluation (- - - -).
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Figure 2. (a) R(k,0) and (b) R¢(k,0) for k = 3000 from the stretched-spiral
vortex model with stationary vortex structure centres. Numerical evaluation
( ) and asymptotic evaluation (- - - -).

structure is given by u(x,t) = u(x — Ut,t) + U. The numerator in the definition of R(k, o),
equation (5), is then given by

(271r)3 /S/V (/(ﬁz(x —Ut,t)a;(x—U(t+0)+r,t+0))p(U) dU> e kT qr dQy, (39)

where (-) represents the averages over time, space and vortex orientation in the stretched-spiral
vortex model. The [ p(U)dU integral implements an average over the gross velocities of the
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Figure 3. Energy spectrum from the non-axisymmetric vorticity for the stretched-
spiral vortex model.

structures in the ensemble. The denominator in equation (5) involves single time statistics
that are not influenced by U. Making a change of the integration variables r' = r — Uo and
x' = x — Ut, we find that

R(k,0) = ( / p(U)e kU dU> R(k,0), (40)

where R is the modal correlation function for vortex structures with stationary centres. We have
used the fact that the r integration is over an infinite volume, while the x integral (representing
a spatial average) is over an infinite interval in two directions perpendicular to the vortex axis,
and the integrand is independent of the coordinate parallel to the vortex axis. The distribution
of U is isotropic, so that we can write p(U) = P(|U|/ugposs) for a non-dimensional function
P and a characteristic velocity ugross and so R(k, o) = f(kugmssa)f%(k, o) for some function f.
Thus, unsurprisingly, the constant motion of the structures has introduced a sweeping time scale
(kugross)il-

For example, if p(U) = (27u2,,,) /% exp(—|U[?/(2u2,,,)), where w5 is the rms turbulent
velocity, then

R(k,0) = exp(—k*u?

rms

o?/2)R(k,0). (41)

Note that the factor exp(—k?u2,,,02/2) is the same as Kraichnan’s linearized estimate for R(k, o)
[5]. The analysis for the scalar modal correlation function is identical and so

R(k,0) = exp(—k*u?

rms

0%/2)R¢(k, o), (42)

where R¢ is the scalar modal correlation function for vortex structures with stationary centres.

Equations (41) and (42) show that the stretched-spiral vortex model provides an integrated
and self-consistent treatment, in which winding and stretching in the vortex structures leads to
an inertial time scale, and movement of the vortex structures leads to a sweeping time scale.
Our asymptotic analysis suggests that the radial motion due to stretching is more important
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than the vorticity amplification due to stretching, at least to leading order. We note that the
sweeping part is the same for both the velocity and the scalar and that the factors given by
(34) and (35) related to internal motion in the vortex structures are also very similar. Thus,
we expect the relative importance of the inertial and sweeping time scales to be the same for
the velocity and the scalar. This is in contrast to the results of Yeung and Sawford [12], who
found that, in certain aspects, a hypothesis of random sweeping may be more valid for the scalar
compared with the velocity.

4. Direct numerical simulation

We performed a DNS with 5122 grid points on the QSC supercomputer to investigate the small-
scale mixing of a passive scalar in a turbulent flow and to calculate the modal time correlations
of the velocity and scalar fields.

4.1. Description of the DNS

The passive scalar is mixed by an incompressible, statistically homogeneous and isotropic
turbulent velocity field. The passive scalar field, ¢(x,t), has a mean gradient, 3, in the z
direction. The scalar fluctuation ¢’ is defined by

c(x,t) = By + ' (x,1) (43)

and is statistically homogeneous and axisymmetric about the xj-axis. We solved the
incompressible Navier—Stokes equations for the velocity field and the advection—diffusion
equation for the scalar, using a Fourier—Galerkin pseudospectral code in a cube with periodic
boundary conditions. A 3/2 dealiasing method was used for the non-linear terms in the
momentum and scalar equations. A second-order explicit Runge-Kutta scheme was used for
time-stepping, with integrating factors accounting for the viscous and diffusive terms. The
velocity field was forced at the large scales so that it became statistically stationary in time.
The method used was to force 20 Fourier modes, with wavevectors k such that 1 < |k| < 2 (see
[23]). The forcing coefficients were chosen so that the energy injection rate | fic - Gy, is constant,
where fi and i are the Fourier modes of the forcing and velocity fields respectively. The mean
gradient acted as the source of variance of the scalar fluctuation, so that the scalar field also
became statistically stationary in time.

The modal time-correlation functions were calculated for a set of wavenumbers {k‘} and
Ndelay time delays {Ji}. The modal time-correlation functions were calculated at several times
{T"}, and an average was then taken for the final results. The intervals between the T" values
were greater than the maximum o®. For a given 77, the velocity and scalar fields were needed
at the ngeqy times t = TJ — ¢'. To minimize storage requirements, the velocity and scalar
fields were stored only in the wavenumber shells {k?} at these times. The {0} were chosen to
be multiples of the simulation timestep. The above method requires the timestep to be fixed
throughout the stationary period of the simulation and so the Courant number must be chosen
to be lower than that of a simulation with a variable timestep.

Parameters describing the simulation are shown in table 1. Values are also reported for a
smaller run with 256 grid points. Here, T.qq, is the eddy turnover time, T, the time during
which the statistics are collected, Ry the Taylor Reynolds number, Sc the Schmidt number (the
ratio of the viscosity to the diffusivity), kpq. the largest dynamically significant wavenumber, n
the Kolmogorov length and R; the Reynolds number based on the integral length scale [. The
turbulent length scale is [, = u?,,./€ where € is the dissipation, kg is the smallest wavenumber
and C' is the Courant number.
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Table 1. Simulation parameters for the stationary period of the DNS.
Grid Ry Tsat/Teasy Sc¢  kmaen Ry @/(Bl)?* kol C

5123 265 10.5 0.7 1.05 1901 0.45 1.00 0.48
2563 167 9.3 0.7 1.00 779 0.38 0.99 0.51
(@) 38 E (b)
25¢
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Figure 4. Spectra from the DNS at 512% (——) and 256 (- - - -): (a) energy
spectra in compensated form, (b) scalar spectra compared with k=53 and the
stretched-spiral vortex model result from [15] (------ ).

4.2. Results of the DNS

The shell-averaged energy spectrum in compensated form is shown in figure 4(a) for both the
2563 and 5123 runs. The beginning of the inertial range and the bump in the dissipation range
are apparent. The shell-averaged scalar spectrum E€(k) is shown in figure 4(b), where the
normalization involves the scalar dissipation €.. Again, there is a bump at the beginning of the
dissipation range, but the slope at the beginning of the inertial convective range is considerably
shallower than —5/3.

Also shown in figure 4(b) is the scalar spectrum that results from the stretched-spiral vortex
model calculation of Pullin and Lundgren [15]. We plot the results given by equations (107) and
(108) of that paper, for a Schmidt number of 0.7. The vortex Reynolds number was chosen
to be 200, noting that it should at least be below the Taylor Reynolds number of 265 in the
DNS. At the current Schmidt number of 0.7, the first-order scalar dissipation, given by equation
(109) of [15], could not be neglected. The result is a combination of a k! term and a k=%
term, representing the first two terms in an asymptotic series. There is good agreement with
the DNS result, although the DNS scalar spectrum is somewhat lower in the viscous-diffusive
range. A comparison, not shown here, using a vortex Reynolds number of 1000 also gave
reasonable agreement. Pullin and Lundgren [15] made a comparison with the experiment at
Schmidt numbers 7 and 700, and it is interesting to see that the model seems to compare well
at a Schmidt number of 0.7 as well.
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Figure 5. DNS results for the modal time-correlation function of (a) the velocity
and (b) the scalar: (O) kn = 0.0087, (A) kn=0.0137, (V) kn = 0.0216, ({)
kn = 0.0341, (O) kn = 0.0538, (M) kn = 0.0848, (A) kn = 0.134, (V) kn = 0.211,
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Figure 6. DNS results for the modal time-correlation function of (a) the velocity
and (b) the scalar using the sweeping time scaling. See figure 5 for a key to the
symbols used.

Results from the 5123 simulation for the modal time correlation function of the velocity
are shown in figure 5(a) and those for the scalar in figure 5(b). These are replotted using the
sweeping time scaling in figures 6(a) and (b) and the inertial time scaling in figures 7(a) and
(b). The best collapse is for the sweeping time scale for both the velocity and the scalar. The
collapse occurs for wavenumbers in the inertial-convective and dissipation ranges. As was noted
earlier, Yeung and Sawford [12] found that a hypothesis of random sweeping was more effective
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Figure 7. DNS results for the modal time-correlation function of (a) the velocity
and (b) the scalar using the inertial time scaling. See figure 5 for a key to the
symbols used.

for the scalar than for the velocity in some aspects. It is difficult to resolve this issue from
figures 6(a) and (b) for the modal time-correlation function.

In figure 8, we compare the modal time-correlation functions for the velocity and the scalar.
We see that, for a sufficiently large wavenumber, the modal time-correlation functions coincide.
This is consistent with the picture of the primary decorrelation mechanism for the small-scale
structures (in both the velocity and the scalar) being convection by the large-scale motions.

4.3. Comparison of the DNS and the stretched-spiral vortex model

We wish to compare the predictions of the stretched-spiral vortex model for the modal time-
correlation functions with the results from the DNS. For the DNS, there was a mean scalar
gradient; however, in the stretched-spiral vortex model calculation of section 3, we considered
the statistically isotropic case for the sake of simplicity. This discrepancy is not expected to be
significant because of the shell averages involved in the definition of the modal time-correlation
functions.

It is necessary to choose some parameters to characterize the vortex structures in the model.
We used s, € and v from the DNS with a = (¢/15v)/2, and let the characteristic length scale
of the vortex structures, L, be the Taylor length scale. We again set the vortex Reynolds number
I'/v to 200. The initial vorticity and scalar profiles were the same as used in section 3.4. The
results for the stretched-spiral vortex model were calculated using numerical evaluation of (22)
and (23) for R(k,o) and R°(k, o) in expressions (41) and (42).

The comparison is made with the results of the DNS at 5123 gridpoints. The effect of the
change in Reynolds number between the two DNS runs was unclear because the wavenumber
and delay times were at different normalized values and so the results of the DNS at 256% for
the modal time-correlation functions are not presented here.

In figures 9 and 10, the DNS and stretched-spiral vortex model results are compared for
representative wavenumbers kn = 0.0848 and 0.211. These wavenumbers correspond to kL =
2.72 and 6.76, respectively. We do not consider smaller values of kL since the stretched-spiral
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0.0848 and (b) kn = 0.211: DNS results (®) and
—k2u2,, . 0%/2) (— - —)

rms

vortex model is only considered appropriate for the fine scales within the vortex structures. Also

shown are the convective part exp(

2,2
—k Urms

02/2) and the factors R(k,o) and R°(k, o) related to

internal motion within the vortex structures, which make up the stretched-spiral vortex model
results. Clearly, for these wavenumbers, the convective part is dominant and so the stretched-
spiral vortex model results collapse well with the sweeping time scale, but not perfectly. It is
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Figure 10. R°(k,0) at (a) kn = 0.0848 and (b) kn = 0.211: DNS results (®) and

stretched-spiral vortex model (——). Also shown are exp(—k*u2,,,02/2) (— - —)
and Rgtat(k)o-) (_ - _)‘

important to note that, for other Reynolds numbers and other values of the parameters (e.g.
the vortex length scale L), the factors related to internal motion within the vortex structures
may be more significant.

5. Concluding remarks

The stretched-spiral vortex model has been shown to predict two characteristic time scales
for the velocity and scalar modal time-correlation functions. An inertial time scale arises
from the winding by the vortex cores and the radial motion caused by axial stretching of
the vortex structures. A sweeping time scale arises from the movement of the centres of the
vortex structures. Thus the model provides an integrated treatment, resulting in both of these
characteristic time scales.

Many studies have been performed on the modal time-correlation function of the velocity
field; however, here we have also considered the modal time-correlation function of a passive
scalar. The stretched-spiral vortex model predicts a similar form for both functions, and this is
borne out by results from the DNS.

The asymptotic evaluation of the stretched-spiral vortex model result for the modal time
correlation function of the scalar was found to be independent of the scalar diffusivity. The
dependence of the scalar modal time-correlation function on the scalar diffusivity could be
investigated further using DNS at a range of Schmidt numbers.
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Appendix A. Behaviour of the modal time-correlation function at zero delay time

Here, we will show how the choice of normalization used in definition (3) of the modal time-
correlation function compensates for the effect of non-stationarity of the turbulent velocity field,
at least for a sufficiently small delay time o. Consider the derivative of R;;(r,t, o) with respect
to o evaluated at o = 0,

0 d ad
57?/] -(I‘,t, O') e = u](x,t)guj(x +r,t+ O') - = ’LL]'(X, t)gu](x + rvt). (Al)
The assumption of homogeneity then gives

a d 0

gRjj(—r, t,o) L = u;(x, t)%uj(x —r,t) =uj(x+r, t)§uj(x, t), (A.2)
so that

S Rmto)|  + LR(—rt,0) IR i(x,1,0) (A.3)

—R;i(r,t,o —Rji(—r,t, 0 = —R,;r . .

2 T e P

Then, we have that

om0 (271f)3 /s/v <_£Rjj(_r’t’a)

:(2711')3/5/‘/;721']-(1‘,15,0)

d
= — ngj(k‘, t, 0')

9 0 —ik-r
%ij(k,t,o) —i—atRjj(r,t,O)) e kT drdQy,

o=0

. 9
e T dr dQy, + 2Bk, 1)

o=0

3
0" Bk t A4
+2- (K, 1), (A.4)

o=0

where we have made a change of integration variables from r to —r and from k to —k. Thus,
we have the result,

(3300 ,0))yy Qulkt0)d
SEhD T aB(heE sl =0 (A5)

Appendix B. Asymptotic evaluation of h,(p.) — h,(ps)

We wish to find hy,(p,) — hn(ps) to leading order in the small parameters €; = ao and ea = 1/(a).
The assumption of small ¢; means that we are considering delay times smaller than the stretching
time of the vortex structures. This will not be restrictive if R(k, o) decays on time scales faster
than 1/a, a condition that may be checked a posteriori. The assumption of small €3 is not
restrictive as (a7) must be large for solutions (26) and (27) to be valid. Using equation (30) to
relate 7/ to 7, we find that

at’ = at + (ao)(a7) + O(er) + O(e} /e2). (B.1)

To relate g, to ps, we start with the exact relation A(p))ar’(1 4 am’)/? = A(ps)ar(1 + at)'/2.
Substituting for (a7’) from equation (B.1), we find

A(pL) = Aps)(1 — §ac) + O(ef) + O(erer). (B.2)
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Taylor expanding A(p’,) about ps and comparing with equation (B.2), we find

;o 3 A(ps)
Ps = Ps — i(aO—)A(pS)

+ O(€2) + O(eq€2). (B.3)

Finally, Taylor expanding Q(p}) about ps and using equation (B.3) gives

A(ps)z
A(ps)

Substituting for 7/, p and Q(p}) in the definition of hy(p}) gives

3nTA(ps)® K <3A(ps) Ps>)

28(ps) (@) \2A(ps) " 2

+0(er) + O(e}/e2), (B.5)

Qo)) = Qpy) — 2(a0) 2L 4 0() 1+ O(ere). (B.4)

2

() — ha(ps) = ac (—nmps)T n

where we have used that (kL) is O(e, 3/ 2) from equation (29). Then, substituting for 7 using
equation (29) and after some algebra, we find

ha(P) = h(ps) = K on!Ba®s(ps) + O((KL)**(a0)?) + O(a0), (B.6)
where
Alps)[ps — Q(p)
) = - , B.7
o) 2 AP o
and we have assumed A(p) = —|A(p)|. There has been an important cancellation of the two

terms from equation (B.5) that relates to movement of the points of stationary phase in time
0. We can interpret the remaining two terms as follows. The first term on the right-hand side
of (B.7) is caused by the radial motion that occurs in time o due to stretching, and the second
term is attributable to the winding that occurs in time o.
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